Virk, Žiga Rips complexes as nerves and a functorial Dowker-nerve diagram. (English) Zbl 07321615 Mediterr. J. Math. 18, No. 2, Paper No. 58, 25 p. (2021). MSC: 05E45 55U10 55U05 57N16 57N65 PDF BibTeX XML Cite \textit{Ž. Virk}, Mediterr. J. Math. 18, No. 2, Paper No. 58, 25 p. (2021; Zbl 07321615) Full Text: DOI
Adamaszek, Michał; Adams, Henry; Gasparovic, Ellen; Gommel, Maria; Purvine, Emilie; Sazdanovic, Radmila; Wang, Bei; Wang, Yusu; Ziegelmeier, Lori On homotopy types of Vietoris-Rips complexes of metric gluings. (English) Zbl 1455.55005 J. Appl. Comput. Topol. 4, No. 3, 425-454 (2020). Reviewer: Yuichi Ike (Kawasaki) MSC: 55N31 55U10 68T09 55P15 05E45 PDF BibTeX XML Cite \textit{M. Adamaszek} et al., J. Appl. Comput. Topol. 4, No. 3, 425--454 (2020; Zbl 1455.55005) Full Text: DOI
Lesnick, Michael; Rabadán, Raúl; Rosenbloom, Daniel I. S. Quantifying genetic innovation: mathematical foundations for the topological study of reticulate evolution. (English) Zbl 1433.92030 SIAM J. Appl. Algebra Geom. 4, No. 1, 141-184 (2020). MSC: 92D15 55N31 PDF BibTeX XML Cite \textit{M. Lesnick} et al., SIAM J. Appl. Algebra Geom. 4, No. 1, 141--184 (2020; Zbl 1433.92030) Full Text: DOI
Virk, Žiga 1-Dimensional intrinsic persistence of geodesic spaces. (English) Zbl 1443.55002 J. Topol. Anal. 12, No. 1, 169-207 (2020). Reviewer: Bożena Piątek (Gliwice) MSC: 55N31 57N65 55N05 55N35 55Q05 53C22 30F99 53B21 PDF BibTeX XML Cite \textit{Ž. Virk}, J. Topol. Anal. 12, No. 1, 169--207 (2020; Zbl 1443.55002) Full Text: DOI