×

Onset of shear band localization by a local generalized eigenvalue analysis. (English) Zbl 1423.74166

Summary: Shear bands are material instabilities associated with highly localized intense plastic deformation zones which can form in materials undergoing high strain rates. Determining the onset of shear band localization is a difficult task and past work reported in the literature attempt to detect this instability by computing the eigenvalues of the acoustic tensor or by studying the linear stability of the perturbed governing equations. However, both methods have their limitations and are not suited for general rate dependent materials in multidimensions.{ }In this work we propose a novel approach to determine the onset of shear band localization and alleviate the limitations of the above mentioned methods.{ }Owing to the implicit mixed finite elements discretization employed in this work, we propose to cast the instability analysis as a generalized eigenvalue problem by employing a particular decomposition of the element Jacobian matrix. We show that this approach is attractive, as it is applicable to general rate dependent multidimensional cases where no special simplifying assumptions ought to be made.{ }To verify the accuracy of the proposed eigenvalue analysis, we first extend an analytical criterion by applying linear perturbation techniques to the continuous PDE model, considering an elastoplastic material with thermal diffusion and a non-linear Taylor-Quinney coefficient. While this extension is novel on its own, it requires strenuous derivations and is not easily extended to general multidimension applications. Hence, herein it is only used for verification purposes in 1D.{ }Numerical results on one-dimensional problems show that the eigenvalue analysis exactly recovers the instability point predicted by the analytical criterion with non-linear Taylor-Quinney coefficient. In addition, the proposed generalized eigenvalue analysis is applied on two-dimensional problems where propagation of the instability can be easily determined.

MSC:

74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
74H55 Stability of dynamical problems in solid mechanics

Software:

PETSc; LAPACK
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bigoni, D., Bifurcation and instability of non-associative elastoplastic solids, (Petryk, H., Material Instabilities in Elastic and Plastic Solids (2000), Springer), 1-52 · Zbl 1066.74026
[2] Gajo, A.; Bigoni, D.; Muir Wood, D., Multiple shear band development and related instabilities in granular materials, J. Mech. Phys. Solids, 52, 12, 2683-2724 (2004) · Zbl 1087.74019
[3] Li, Shaofan; Liu, Wing Kam; Rosakis, Ares J.; Belytschko, Ted; Hao, Wei, Mesh-free Galerkin simulations of dynamic shear band propagation and failure mode transition, Internat. J. Solids Structures, 39, 5, 1213-1240 (2002) · Zbl 1090.74698
[4] Zhou, M.; Ravichandran, G.; Rosakis, A. J., Dynamically propagating shear bands in impact-loaded prenotched plates—II. Numerical simulations, J. Mech. Phys. Solids, 44, 6, 1007-1032 (1996)
[5] Zhou, M.; Needleman, A.; Clifton, R. J., Finite element simulations of shear localization in plate impact, J. Mech. Phys. Solids, 42, 3, 423-458 (1994) · Zbl 0800.73368
[6] Belytschko, Ted; Chiang, Huai-Yang; Plaskacz, Edward, High resolution two-dimensional shear band computations: imperfections and mesh dependence, Comput. Methods Appl. Mech. Engrg., 119, 1-2, 1-15 (1994) · Zbl 0849.73064
[7] Batra, R. C., The initiation and growth of, and the interaction among, adiabatic shear bands in simple and dipolar materials, Int. J. Plast., 3, 1, 75-89 (1987)
[8] Batra, R. C.; Chen, L., Effect of viscoplastic relations on the instability strain, shear band initiation strain, the strain corresponding to the minimum shear band spacing, and the band width in a thermoviscoplastic material, Int. J. Plast., 17, 11, 1465-1489 (2001) · Zbl 1011.74010
[9] Wright, T. W.; Batra, R. C., The initiation and growth of adiabatic shear bands, Int. J. Plast., 1, 3, 205-212 (1985)
[10] Aifantis, E. C., On the microstructural origin of certain inelastic models, J. Eng. Mater. Technol., 106, 4, 326-330 (1984)
[11] Aifantis, Elias C., The physics of plastic deformation, Int. J. Plast., 3, 3, 211-247 (1987) · Zbl 0616.73106
[12] Abu Al-Rub, Rashid K.; Voyiadjis, George Z., A physically based gradient plasticity theory, Int. J. Plast., 22, 4, 654-684 (2006) · Zbl 1190.74003
[13] Abu Al-Rub, Rashid K.; Voyiadjis, George Z., A finite strain plastic-damage model for high velocity impact using combined viscosity and gradient localization limiters: part I—theoretical formulation, Int. J. Damage Mech., 15, 4, 293-334 (2006), 1530-7921
[14] Voyiadjis, George Z.; Abu Al-Rub, Rashid K., A finite strain plastic-damage model for high velocity impacts using combined viscosity and gradient localization limiters: part II—numerical aspects and simulations, Int. J. Damage Mech., 15, 4, 335-373 (2006), 1530-7921
[15] Lages, E. N.; Paulino, G. H.; Menezes, I. F.M.; Silva, R. R., Nonlinear finite element analysis using an object-oriented philosophy—application to beam elements and to the cosserat continuum, Eng. Comput., 15, 1, 73-89 (1999), 1435-5663
[16] Eringen, A. Cemal, Nonlocal Continuum Field Theories (2002), Springer: Springer New York · Zbl 1023.74003
[17] Bažant, Zdenek P.; Jirásek, Milan, Nonlocal integral formulations of plasticity and damage: survey of progress, J. Eng. Mech., 128, 11, 1119-1149 (2002)
[18] Peerlings, R. H.J.; Geers, M. G.D.; de Borst, R.; Brekelmans, W. A.M., A critical comparison of nonlocal and gradient-enhanced softening continua, Internat. J. Solids Structures, 38, 44-45, 7723-7746 (2001) · Zbl 1032.74008
[19] Li, Shaofan; Hao, Wei; Liu, Wing Kam, Mesh-free simulations of shear banding in large deformation, Internat. J. Solids Structures, 37, 48-50, 7185-7206 (2000) · Zbl 0995.74082
[20] Li, Shaofan; Liu, Wing Kam, Numerical simulations of strain localization in inelastic solids using mesh-free methods, Internat. J. Numer. Methods Engrg., 48, 9, 1285-1309 (2000) · Zbl 1052.74618
[21] Berger-Vergiat, Luc; McAuliffe, Colin; Waisman, Haim, Isogeometric analysis of shear bands, Comput. Mech., 1-19 (2014), 1432-0924 · Zbl 1398.74304
[22] McAuliffe, Colin; Waisman, Haim, Mesh insensitive formulation for initiation and growth of shear bands using mixed finite elements, Comput. Mech., 51, 5, 807-823 (2013), 1432-0924 · Zbl 1308.74039
[23] Burroughs, E. A.; Romero, L. A.; Lehoucq, R. B.; Salinger, A. G., Large scale eigenvalue calculations for computing the stability of buoyancy driven flows. Technical Report (2001)
[24] Mittelmann, H.; Chang, K.; Jankowski, D., Iterative solution of the eigenvalue problem in Hopf bifurcation for the Boussinesq equations, SIAM J. Sci. Comput., 15, 3, 704-712 (1994) · Zbl 0805.65119
[25] Anand, L.; Kim, K. H.; Shawki, T. G., Onset of shear localization in viscoplastic solids, J. Mech. Phys. Solids, 35, 4, 407-429 (1987) · Zbl 0612.73046
[26] Bai, Y. L., Thermo-plastic instability in simple shear, J. Mech. Phys. Solids, 30, 4, 195-207 (1982) · Zbl 0491.73037
[27] Batra, R. C.; Wei, Z. G., Instability strain and shear band spacing in simple tensile/compressive deformations of thermoviscoplastic materials, Int. J. Impact Eng., 34, 3, 448-463 (2007)
[28] Dai, L. H.; Bai, Y. L., Basic mechanical behaviors and mechanics of shear banding in BMGs, Int. J. Impact Eng., 35, 8, 704-716 (2008)
[29] Fressengeas, C.; Molinari, A., Instability and localization of plastic flow in shear at high strain rates, J. Mech. Phys. Solids, 35, 2, 185-211 (1987) · Zbl 0601.73036
[30] Ling, Xianwu; Belytschko, T., Thermal softening induced plastic instability in rate-dependent materials, J. Mech. Phys. Solids, 57, 4, 788-802 (2009) · Zbl 1252.74019
[31] Pan, Jwo, Perturbation analysis of shear strain localization in rate sensitive materials, Internat. J. Solids Structures, 19, 2, 153-164 (1983) · Zbl 0502.73039
[32] Wright, T. W., Shear band susceptibility: work hardening materials, Int. J. Plast., 8, 5, 583-602 (1992) · Zbl 0780.73026
[33] Baucom, J. N.; Zikry, M. A., Perturbation analysis of high strain-rate shear localization in B.C.C. crystalline materials, Acta Mech., 137, 1-2, 109-129 (1999), 1619-6937 · Zbl 0971.74022
[34] Kim, Kwon Hee, Shear localization in viscoplastic solids (1987), Department of Mechanical Engineering, Massachusetts Institute of Technology, (Ph.D. dissertation)
[35] Bigoni, D.; Zaccaria, D., On the eigenvalues of the acoustic tensor in elastoplasticity, Eur. J. Mech. A Solids, 13, 5, 621-638 (1994) · Zbl 0818.73024
[36] Borja, Ronaldo I., Bifurcation of elastoplastic solids to shear band mode at finite strain, Comput. Methods Appl. Mech. Engrg., 191, 46, 5287-5314 (2002) · Zbl 1083.74532
[37] Szabó, L., On the eigenvalues of the fourth-order constitutive tensor and loss of strong ellipticity in elastoplasticity, Int. J. Plast., 13, 10, 809-835 (1997) · Zbl 0907.73022
[38] Xue, Liang; Belytschko, Ted, Fast methods for determining instabilities of elastic-plastic damage models through closed-form expressions, Internat. J. Numer. Methods Engrg., 84, 12, 1490-1518 (2010) · Zbl 1202.74154
[39] Lemonds, J.; Needleman, A., Finite element analyses of shear localization in rate and temperature dependent solids, Mech. Mater., 5, 4, 339-361 (1986)
[40] Mason, J. J.; Rosakis, A. J.; Ravichandran, G., On the strain and strain rate dependence of the fraction of plastic work converted to heat: an experimental study using high speed infrared detectors and the kolsky bar, Mech. Mater., 17, 2-3, 135-145 (1994)
[41] Rosakis, P.; Rosakis, A. J.; Ravichandran, G.; Hodowany, J., A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals, J. Mech. Phys. Solids, 48, 3, 581-607 (2000) · Zbl 1005.74004
[42] Aravas, N.; Kim, K.-S.; Leckie, F. A., On the calculations of the stored energy of cold work, J. Eng. Mater. Technol., 112, 4, 465-470 (1990)
[43] Vural, M.; Ravichandran, G.; Rittel, D., Large strain mechanical behavior of 1018 cold-rolled steel over a wide range of strain rates, Metall. Mater. Trans. A, 34, 12, 2873-2885 (2003), 1543-1940
[44] Simo, J. C.; Hughes, T. J.R., Computational Inelasticity (1998), Springer · Zbl 0934.74003
[45] Taylor, G. I.; Quinney, H., The latent energy remaining in a metal after cold working, Proc. R. Soc. Lond. Ser. A, 143, 849, 307-326 (1934), 1471-2946
[46] Hor, Anis; Morel, Franck; Lebrun, Jean-Lou; Germain, Guénaël, Modelling, identification and application of phenomenological constitutive laws over a large strain rate and temperature range, Mech. Mater., 64, 91-110 (2013)
[47] Johnson, Gordon R.; Cook, William H., Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Eng. Fract. Mech., 21, 1, 31-48 (1985)
[48] Odeshi, A. G.; Bassim, M. N.; Al-Ameeri, S.; Li, Q., Dynamic shear band propagation and failure in AISI 4340 steel, J. Mater. Process. Technol., 169, 2, 150-155 (2005)
[49] Howle, V. E.; Trefethen, Lloyd N., Eigenvalues and musical instruments, J. Comput. Appl. Math., 135, 1, 23-40 (2001) · Zbl 0994.34073
[50] Murray, Richard M.; Li, Zexiang; Shankar Sastry, S., A Mathematical Introduction to Robotic Manipulation (1994), CRC Press · Zbl 0858.70001
[51] Routh, Edward John, A Treatise on the Stability of a Given State of Motion: Particularly Steady Motion (1877), Macmillan and Company
[52] Hurwitz, A., Ueber die bedingungen, unter welchen eine gleichung nur wurzeln mit negativen reellen theilen besitzt, Math. Ann., 46, 273-284 (1895), 1432-1807 · JFM 26.0119.03
[53] Lyapunov, A. M., General Problem of the Stability of Motion (1992), CRC Press · Zbl 0786.70001
[54] Chen, Guanrong, Stability of nonlinear systems, (Wiley Encyclopedia of Electrical and Electronics Engineering (2001), John Wiley & Sons, Inc.), 4881-4896
[55] Babuška, Ivo, Error-bounds for finite element method, Numer. Math., 16, 4, 322-333 (1971), 0945-3245 · Zbl 0214.42001
[56] Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers, ESAIM: Math. Model. Numer. Anal. - Modél. Math. Anal. Numér., 8, R2, 129-151 (1974) · Zbl 0338.90047
[57] Reissner, E., On a variational theorem in elasticity, J. Math. Phys., 29, 2, 90-95 (1950) · Zbl 0039.40502
[58] Kalthoff, Jorg F., Shadow optical analysis of dynamic shear fracture, Opt. Eng., 27, 10, 835-840 (1988)
[59] R.L. Taylor, FEAP—finite element analysis program, 2014.; R.L. Taylor, FEAP—finite element analysis program, 2014.
[60] Balay, Satish; Brown, Jed; Buschelman, Kris; Eijkhout, Victor; Gropp, William D.; Kaushik, Dinesh; Knepley, Matthew G.; McInnes, Lois Curfman; Smith, Barry F.; Zhang, Hong, PETSc users manual. Technical Report ANL-95/11—Revision 3.3 (2012), Argonne National Laboratory
[61] Anderson, E.; Bai, Z.; Bischof, C.; Blackford, S.; Demmel, J.; Dongarra, J.; Du Croz, J.; Greenbaum, A.; Hammarling, S.; McKenney, A.; Sorensen, D., LAPACK Users’ Guide (1999), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia, PA, (paperback) · Zbl 0934.65030
[62] Wright, T. W., Approximate analysis for the formation of adiabatic shear bands, J. Mech. Phys. Solids, 38, 4, 515-530 (1990)
[63] Hopkinson, Bertram, A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets, Philos. Trans. R. Soc. Lond. Ser. A, Contain. Pap. Math. Phys. Character, 213, 497-508, 437-456 (1914), 1471-2962
[64] Kolsky, H., An investigation of the mechanical properties of materials at very high rates of loading, Proc. Phys. Soc. Sect. B, 62, 11, 676-700 (1949)
[65] Chen, Weinong W.; Song, Bo, Split Hopkinson (Kolsky) Bar: Design, Testing and Applications (2010), Springer · Zbl 1204.74002
[66] Wright, T. W.; Walter, J. W., On stress collapse in adiabatic shear bands, J. Mech. Phys. Solids, 35, 6, 701-720 (1987)
[67] Batra, R. C.; Kim, C. H., Analysis of shear banding in twelve materials, Int. J. Plast., 8, 4, 425-452 (1992)
[68] Dodd, B.; Bai, Y., Width of adiabatic shear bands, Mater. Sci. Technol., 1, 1, 38-40 (1985)
[69] McAuliffe, Colin; Waisman, Haim, A Pian-Sumihara type element for modeling shear bands at finite deformation, Comput. Mech., 53, 5, 925-940 (2014), 1432-0924 · Zbl 1398.74370
[70] Bažant, Zdeněk P., Structural stability, Internat. J. Solids Structures, 37, 1-2, 55-67 (2000) · Zbl 1073.74543
[71] Batra, R. C.; Jaber, N. A.; Malsbury, M. E., Analysis of failure modes in an impact loaded thermoviscoplastic prenotched plate, Int. J. Plast., 19, 2, 139-196 (2003) · Zbl 1032.74647
[72] Batra, R. C.; Ravinsankar, M. V.S., Three-dimensional numerical simulation of the Kalthoff experiment, Int. J. Fract., 105, 2, 161-186 (2000), 1573-2673
[73] Marchand, A.; Duffy, J., An experimental study of the formation process of adiabatic shear bands in a structural steel, J. Mech. Phys. Solids, 36, 3, 251-283 (1988)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.