×

zbMATH — the first resource for mathematics

On inverses of some permutation polynomials over finite fields of characteristic three. (English) Zbl 07242795
Summary: By using the piecewise method, Lagrange interpolation formula and Lucas’ theorem, we determine explicit expressions of the inverses of a class of reversed Dickson permutation polynomials and some classes of generalized cyclotomic mapping permutation polynomials over finite fields of characteristic three.
MSC:
11T06 Polynomials over finite fields
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bartoli, D., On a conjecture about a class of permutation trinomials, Finite Fields Appl., 52, 30-50 (2018) · Zbl 1404.11133
[2] Cao, X.; Hu, L.; Zha, Z., Constructing permutation polynomials from piecewise permutations, Finite Fields Appl., 26, 162-174 (2014) · Zbl 1288.11109
[3] Charpin, P.; Mesnager, S.; Sarkar, S., Involutions over the Galois field \(\mathbb{F}_{2^n} \), IEEE Trans. Inf. Theory, 62, 4, 2266-2276 (2016) · Zbl 1359.94789
[4] Chou, W.-S.; Hou, X.-D., On a conjecture of Fernando, Hou and Lappano concerning permutation polynomials over finite fields, Finite Fields Appl., 56, 58-92 (2019) · Zbl 1415.11178
[5] Fernando, N., Reversed Dickson polynomials of the \((k + 1)\)-th kind over finite fields, J. Number Theory, 172, 234-255 (2017) · Zbl 1419.11128
[6] Fernando, N., A note on permutation binomials and trinomials over finite fields, N.Z. J. Math., 48, 25-29 (2018) · Zbl 1394.11080
[7] Fernando, N., Reversed Dickson polynomials of the \((k + 1)\)-th kind over finite fields, II (2018)
[8] Fernando, N.; Hou, X.-D., A piecewise construction of permutation polynomials over finite fields, Finite Fields Appl., 18, 6, 1184-1194 (2012) · Zbl 1254.05008
[9] Hong, S.; Qin, X.; Zhao, W., Necessary conditions for reversed Dickson polynomials of the second kind to be permutational, Finite Fields Appl., 37, 54-71 (2016) · Zbl 1402.11146
[10] Hou, X.-D., Two classes of permutation polynomials over finite fields, J. Comb. Theory, Ser. A, 118, 448-454 (2011) · Zbl 1230.11146
[11] Hou, X.-D., Permutation polynomials over finite fields — a survey of recent advances, Finite Fields Appl., 32, 82-119 (2015) · Zbl 1325.11128
[12] Hou, X.-D., Applications of the Hasse-Weil bound to permutation polynomials, Finite Fields Appl., 54, 113-132 (2018) · Zbl 06964000
[13] Hou, X.-D.; Ly, T., Necessary conditions for reversed Dickson polynomials to be permutational, Finite Fields Appl., 16, 436-448 (2010) · Zbl 1209.11103
[14] Hou, X.-D.; Mullen, G. L.; Sellers, J. A.; Yucas, J. L., Reversed Dickson polynomials over finite fields, Finite Fields Appl., 15, 748-773 (2009) · Zbl 1228.11174
[15] Li, K.; Qu, L.; Sun, B.; Li, C., New results about the boomerang uniformity of permutation polynomials, IEEE Trans. Inf. Theory, 65, 11, 7542-7553 (2019) · Zbl 1433.94088
[16] Li, K.; Qu, L.; Wang, Q., Compositional inverses of permutation polynomials of the form \(x^r h( x^s)\) over finite fields, Cryptogr. Commun., 11, 279-298 (2019) · Zbl 1409.11125
[17] Li, L.; Wang, S.; Li, C.; Zeng, X., Permutation polynomials \(( x^{p^m} - x + \delta )^{s_1} + ( x^{p^m} - x + \delta )^{s_2} + x\) over \(\mathbb{F}_{p^n} \), Finite Fields Appl., 51, 31-61 (2018) · Zbl 1385.05006
[18] Li, N., On two conjectures about permutation trinomials over \(\mathbb{F}_{3^{2 k}} \), Finite Fields Appl., 47, 1-10 (2017) · Zbl 1369.05007
[19] Muratović-Ribić, A., A note on the coefficients of inverse polynomials, Finite Fields Appl., 13, 977-980 (2007) · Zbl 1167.11044
[20] Niu, T.; Li, K.; Qu, L.; Wang, Q., New constructions of involutions over finite fields, Cryptogr. Commun., 12, 165-185 (2020) · Zbl 07199658
[21] Tu, Z.; Zeng, X., Two classes of permutation trinomials with Niho exponents, Finite Fields Appl., 53, 99-112 (2018) · Zbl 1392.05005
[22] Tuxanidy, A.; Wang, Q., On the inverses of some classes of permutations of finite fields, Finite Fields Appl., 28, 244-281 (2014) · Zbl 1360.11134
[23] Tuxanidy, A.; Wang, Q., Compositional inverses and complete mappings over finite fields, Discrete Appl. Math., 217, 318-329 (2017) · Zbl 1372.11111
[24] Wang, L.; Wu, B., General constructions of permutation polynomials of the form \(( x^{2^m} + x + \delta )^{i ( 2^m - 1 ) + 1} + x\) over \(\mathbb{F}_{2^{2 m}} \), Finite Fields Appl., 52, 137-155 (2018) · Zbl 1388.05009
[25] Wang, Q., On inverse permutation polynomials, Finite Fields Appl., 15, 207-213 (2009) · Zbl 1183.11075
[26] Wang, Q., Cyclotomy and permutation polynomials of large indices, Finite Fields Appl., 22, 57-69 (2013) · Zbl 1331.11107
[27] Wang, Q., A note on inverses of cyclotomic mapping permutation polynomials over finite fields, Finite Fields Appl., 45, 422-427 (2017) · Zbl 1404.11138
[28] Wang, Q., Polynomials over finite fields: an index approach, (Schmidt, K.-U.; Winterhof, A., Combinatorics and Finite Fields: Difference Sets, Polynomials, Pseudorandomness and Applications. Combinatorics and Finite Fields: Difference Sets, Polynomials, Pseudorandomness and Applications, Radon Series on Computational and Applied Mathematics, vol. 23 (2019), De Gruyter: De Gruyter Berlin, Boston), 319-346 · Zbl 07224782
[29] Wang, Q.; Yucas, J. L., Dickson polynomials over finite fields, Finite Fields Appl., 18, 814-831 (2012) · Zbl 1266.11128
[30] Wu, B., The compositional inverses of linearized permutation binomials over finite fields (2013)
[31] Wu, B.; Liu, Z., Linearized polynomials over finite fields revisited, Finite Fields Appl., 22, 79-100 (2013) · Zbl 1345.11084
[32] Wu, D.; Yuan, P.; Ding, C.; Ma, Y., Permutation trinomials over \(\mathbb{F}_{2^m} \), Finite Fields Appl., 46, 38-56 (2017) · Zbl 1431.11131
[33] Xu, G.; Cao, X.; Ping, J., Some permutation pentanomials over finite fields with even characteristic, Finite Fields Appl., 49, 212-226 (2018) · Zbl 1392.11094
[34] Xu, X.; Feng, X.; Zeng, X., Complete permutation polynomials with the form \(( x^{p^m} - x + \delta )^s + a x^{p^m} + b x\) over \(\mathbb{F}_{p^n} \), Finite Fields Appl., 57, 309-343 (2019) · Zbl 1412.11138
[35] Zha, Z.; Hu, L.; Fan, S., Further results on permutation trinomials over finite fields with even characteristic, Finite Fields Appl., 45, 43-52 (2017) · Zbl 1362.05006
[36] Zheng, D.; Yuan, M.; Li, N.; Hu, L.; Zeng, X., Constructions of involutions over finite fields, IEEE Trans. Inf. Theory, 65, 12, 7876-7883 (2019) · Zbl 1433.11136
[37] Zheng, D.; Yuan, M.; Yu, L., Two types of permutation polynomials with special forms, Finite Fields Appl., 56, 1-16 (2019) · Zbl 1432.11178
[38] Zheng, Y.; Wang, Q.; Wei, W., On inverses of permutation polynomials of small degree over finite fields, IEEE Trans. Inf. Theory, 62, 2, 914-922 (2020) · Zbl 1434.11230
[39] Zheng, Y.; Yu, Y.; Zhang, Y.; Pei, D., Piecewise constructions of inverses of cyclotomic mapping permutation polynomials, Finite Fields Appl., 40, 1-9 (2016) · Zbl 1364.11154
[40] Zheng, Y.; Yuan, P.; Pei, D., Piecewise constructions of inverses of some permutation polynomials, Finite Fields Appl., 36, 151-169 (2015) · Zbl 1355.11106
[41] Zheng, Y.; Yuan, P.; Pei, D., Large classes of permutation polynomials over \(\mathbb{F}_{q^2} \), Des. Codes Cryptogr., 81, 505-521 (2016) · Zbl 1396.11139
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.