×

zbMATH — the first resource for mathematics

Gilbert’s disc model with geostatistical marking. (English) Zbl 1431.60010
Summary: We study a variant of Gilbert’s disc model, in which discs are positioned at the points of a Poisson process in \(\mathbb{R}^2\) with radii determined by an underlying stationary and ergodic random field \(\phi:\mathbb{R}^2\rightarrow[0,\infty)\), independent of the Poisson process. This setting, in which the random field is independent of the point process, is often referred to as geostatistical marking. We examine how typical properties of interest in stochastic geometry and percolation theory, such as coverage probabilities and the existence of long-range connections, differ between Gilbert’s model with radii given by some random field and Gilbert’s model with radii assigned independently, but with the same marginal distribution. Among our main observations we find that complete coverage of \(\mathbb{R}^2\) does not necessarily happen simultaneously, and that the spatial dependence induced by the random field may both increase as well as decrease the critical threshold for percolation.
MSC:
60D05 Geometric probability and stochastic geometry
60K35 Interacting random processes; statistical mechanics type models; percolation theory
60K37 Processes in random environments
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ahlberg, D.,Tassion, V. and Teixeira, A. (2018).Existence of an unbounded vacant set for subcritical continuum percolation.Electron. Commun. Prob.23, 8pp. · Zbl 1401.60173
[2] Ahlberg, D.,Tassion, V. and Teixeira, A. (2018).Sharpness of the phase transition for continuum percolation in ℝ^2.Prob. Theory Relat. Fields172,525-581. · Zbl 1404.60143
[3] Aizenman, M.et al. (1983).On a sharp transition from area law to perimeter law in a system of random surfaces.Commun. Math. Phys.92,19-69. · Zbl 0529.60099
[4] Benjamini, I. and Stauffer, A. (2013).Perturbing the hexagonal circle packing: a percolation perspective.Ann. Inst. H. Poincaré Prob. Statist.49,1141-1157. · Zbl 1383.60094
[5] Benjamini, I.,Jonasson, J.,Schramm, O. and Tykesson, J. (2009).Visibility to infinity in the hyperbolic plane, despite obstacles.ALEA6,323-342. · Zbl 1276.82012
[6] Błaszczyszyn, B. and Yogeshwaran, D. (2013).Clustering and percolation of point processes.Electron. J. Prob.18, 20pp. · Zbl 1291.60099
[7] Błaszczyszyn, B. and Yogeshwaran, D. (2015).Clustering comparison of point processes, with applications to random geometric models. In Stochastic Geometry, Spatial Statistics and Random Fields (Lecture Notes Math. 2120),Springer,Cham, pp. 31-71. · Zbl 1328.60122
[8] Bollobás, B. and Riordan, O. (2006).Percolation.Cambridge University Press,New York. · Zbl 1118.60001
[9] Broman, E. I. and Tykesson, J. (2016).Connectedness of Poisson cylinders in Euclidean space.Ann. Inst. H. Poincaré Prob. Statist.52,102-126. · Zbl 1333.60197
[10] Chiu, S. N.,Stoyan, D.,Kendall, W. S. and Mecke, J. (2013).Stochastic geometry and its applications,3rd edn.John Wiley,Chichester. · Zbl 1291.60005
[11] Gilbert, E. N. (1961).Random plane networks.J. Soc. Indust. Appl. Math.9,533-543. · Zbl 0112.09403
[12] Gilbert, E. N. (1965).The probability of covering a sphere with N circular caps.Biometrika52,323-330. · Zbl 0137.36202
[13] Gouéré, J.-B. (2008).Subcritical regimes in the Poisson Boolean model of continuum percolation.Ann. Prob.36,1209-1220. · Zbl 1148.60077
[14] Häggström, O. and Jonasson, J. (2006).Uniqueness and non-uniqueness in percolation theory.Prob. Surveys3,289-344. · Zbl 1189.60175
[15] Hall, P. (1985).On continuum percolation.Ann. Prob.13,1250-1266. · Zbl 0588.60096
[16] Hilário, M. R.,Sidoravicius, V. and Teixeira, A. (2015).Cylinders’ percolation in three dimensions.Prob. Theory Relat. Fields163,613-642. · Zbl 1333.60205
[17] Illian, J.,Penttinen, A.,Stoyan, H. and Stoyan, D. (2008).Statistical Analysis and Modelling of Spatial Point Patterns.John Wiley,Chichester. · Zbl 1197.62135
[18] Kesten, H. (1982).Percolation Theory for Mathematicians (Progress Prob. Statist. 2).Birkhäuser,Boston, MA.
[19] Meester, R. and Roy, R. (1996).Continuum Percolation (Camb. Tracts Math. 119).Cambridge University Press.
[20] Penrose, M. (2003).Random Geometric Graphs (Oxford Stud. Prob. 5).Oxford University Press.
[21] Roy, R. and Tanemura, H. (2002).Critical intensities of Boolean models with different underlying convex shapes.Adv. Appl. Prob.34,48-57. · Zbl 0998.60094
[22] Russo, L. (1981).On the critical percolation probabilities.Z. Wahrscheinlichkeitsth.56,229-237. · Zbl 0457.60084
[23] Schlather, M.,RibeiroP. J., Jr. P. J., Jr. and Diggle, P. J. (2004).Detecting dependence between marks and locations of marked point processes.J. R. Statist. Soc. B66,79-93. · Zbl 1061.62151
[24] Schneider, R. and Weil, W. (2008).Stochastic and Integral Geometry.Springer,Berlin. · Zbl 1175.60003
[25] Tykesson, J. and Windisch, D. (2012).Percolation in the vacant set of Poisson cylinders.Prob. Theory Relat. Fields154,165-191. · Zbl 1263.82027
[26] Van den Berg, J.,Peres, Y.,Sidoravicius, V. and Vares, M. E. (2008).Random spatial growth with paralyzing obstacles.Ann. Inst. H. Poincaré Prob. Statist.44,1173-1187. · Zbl 1181.60151
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.