×

zbMATH — the first resource for mathematics

Subcritical phase of \(d\)-dimensional Poisson-Boolean percolation and its vacant set. (Phase sous-critique du modèle de percolation Poisson-Booléen et de son complémentaire en dimension \(d\).) (English. French summary) Zbl 1454.82016
For every \(r>0\), define the two functions of \(\lambda\) as \(\theta_r(\lambda):=\mathbf{P}_{\lambda}[0\leftrightarrow \partial B_r]\) and \(\theta(\lambda):=\lim_{r\rightarrow \infty}\theta_r(\lambda).\) Define the critical parameter \(\lambda_c =\lambda_c(d)\) of the model by the formula \(\lambda_c := \inf\{\lambda\geq 0 : \theta(\lambda) > 0\}\). The authors introduce the another critical parameter to discuss Poisson-Boolean percolation as \(\widetilde{\lambda}_c:=\inf \left\{\lambda \geq 0:\underset{r>0}{\inf }\mathbb{P}_{\lambda }[B_{\lambda}\leftrightarrow \partial B_{2r}]>0\right\}\). The authors prove the following main result:
Theorem 1.2 (Sharpness for Poisson-Boolean percolation). – Fix \(d\geq 2\) and assume that \(\underset{\mathbb{R}_+}{\int }r^{5d-3}d\mu (r)<\infty.\) Then, we have that \(\lambda_c = \widetilde{\lambda}_c\). Furthermore, there exists \(c > 0\) such that \(\theta(\lambda)> c(\lambda-\lambda_c)\) for any \(\lambda\geq \lambda_c\).
The authors give a brief description of the general strategy to prove the main theorem. Three properties of the Poisson-Boolean percolation are introduced. Then, the authors present some new results concerning the behavior of Poisson-Boolean percolation when \(\lambda<\widetilde{\lambda}_c\). If there exists \(c > 0\) such that \(\mu[r,\infty]\leq \exp(-cr)\) for every \(r\geq 1\), then, for every \(\lambda<\widetilde{\lambda}_c\), the authors prove that there exists \(c_{\lambda}> 0\) such that for every \(r > 1\), \(\theta_r(\lambda)\leq \exp(-c_{\lambda}r)\).
MSC:
82B43 Percolation
82B26 Phase transitions (general) in equilibrium statistical mechanics
82B27 Critical phenomena in equilibrium statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aizenman, Michael; Barsky, David J., Sharpness of the phase transition in percolation models, Commun. Math. Phys., 108, 3, 489-526 (1987) · Zbl 0618.60098
[2] Aizenman, Michael; Barsky, David J.; Fernández, Roberto, The phase transition in a general class of Ising-type models is sharp, J. Statist. Phys., 47, 3-4, 343-374 (1987)
[3] Ahlberg, Daniel; Tassion, Vincent; Teixeira, Augusto, Sharpness of the phase transition for continuum percolation in \(\mathbb{R}^2 (2016)\) · Zbl 1404.60143
[4] Ahlberg, Daniel; Tassion, Vincent; Teixeira, Augusto, Existence of an unbounded vacant set for subcritical continuum percolation (2017) · Zbl 1401.60173
[5] Beffara, Vincent; Duminil-Copin, Hugo, The self-dual point of the two-dimensional random-cluster model is critical for \(q\ge 1\), Probab. Theory Related Fields, 153, 3-4, 511-542 (2012) · Zbl 1257.82014
[6] Broadbent, S. R.; Hammersley, John M., Percolation processes. I. Crystals and mazes, Proc. Cambridge Philos. Soc., 53, 629-641 (1957) · Zbl 0091.13901
[7] Bollobás, Béla; Riordan, Olivier, The critical probability for random Voronoi percolation in the plane is 1/2, Probab. Theory Related Fields, 136, 3, 417-468 (2006) · Zbl 1100.60054
[8] Duminil-Copin, Hugo; Goswami, Subhajit; Raoufi, Aran; Severo, Franco; Yadin, Ariel, Existence of phase transition for percolation using the Gaussian Free Field (2018)
[9] Duminil-Copin, Hugo; Goswami, Subhajit; Rodriguez, P.-F.; Severo, Franco, Equality of critical parameters for GFF level-set percolation (2019)
[10] Duminil-Copin, Hugo; Raoufi, Aran; Tassion, Vincent, Exponential decay of connection probabilities for subcritical Voronoi percolation in \(\mathbb{R}^d (2017)\) · Zbl 07030876
[11] Duminil-Copin, Hugo; Raoufi, Aran; Tassion, Vincent, Sharp phase transition for the random-cluster and Potts models via decision trees (2017) · Zbl 07003145
[12] Duminil-Copin, Hugo; Tassion, Vincent, A new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model, Commun. Math. Phys., 343, 2, 725-745 (2016) · Zbl 1342.82026
[13] Gilbert, Edgar N., Random plane networks, J. Soc. Indust. Appl. Math., 9, 533-543 (1961) · Zbl 0112.09403
[14] Gouéré, Jean-Baptiste, Subcritical regimes in the Poisson Boolean model of continuum percolation, Ann. Probab., 36, 4, 1209-1220 (2008) · Zbl 1148.60077
[15] Gouéré, Jean-Baptiste; Théret, Marie, Equivalence of some subcritical properties in continuum percolation (2018) · Zbl 1428.62425
[16] Hall, Peter, On continuum percolation, Ann. Probab., 13, 4, 1250-1266 (1985) · Zbl 0588.60096
[17] Last, Günter; Penrose, Mathew D.x, Lectures on the Poisson process, 7 (2017), Cambridge University Press · Zbl 1392.60004
[18] Menshikov, Mikhail V., Coincidence of critical points in percolation problems, Dokl. Akad. Nauk SSSR, 288, 6, 1308-1311 (1986)
[19] Meester, Ronald; Roy, Rahul, Continuum percolation (1996), Cambridge University Press · Zbl 0858.60092
[20] Meester, Ronald; Roy, Rahul; Sarkar, Anish, Nonuniversality and continuity of the critical covered volume fraction in continuum percolation, J. Statist. Phys., 75, 1-2, 123-134 (1994) · Zbl 0828.60083
[21] O’Donnell, Ryan; Saks, Mickael E.; Schramm, O.; Servedio, Rocco A., Every decision tree has an influential variable, 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), 31-39 (2005), IEEE Xplore
[22] Penrose, Mathew D., Non-triviality of the vacancy phase transition for the Boolean model (2017) · Zbl 1394.60101
[23] Ziesche, Sebastian, Sharpness of the phase transition and lower bounds for the critical intensity in continuum percolation on \(\mathbb{R}^d (2016)\) · Zbl 1391.60246
[24] Zuev, Sergei A.; Sidorenko, Alexander, Continuous models of percolation theory. I, Teor. Mat. Fiz., 62, 2, 51-58 (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.