×

zbMATH — the first resource for mathematics

A Bayesian framework for identifying consistent patterns of microbial abundance between body sites. (English) Zbl 1445.92165
Summary: Recent studies have found that the microbiome in both gut and mouth are associated with diseases of the gut, including cancer. If resident microbes could be found to exhibit consistent patterns between the mouth and gut, disease status could potentially be assessed non-invasively through profiling of oral samples. Currently, there exists no generally applicable method to test for such associations. Here we present a Bayesian framework to identify microbes that exhibit consistent patterns between body sites, with respect to a phenotypic variable. For a given operational taxonomic unit (OTU), a Bayesian regression model is used to obtain Markov-Chain Monte Carlo estimates of abundance among strata, calculate a correlation statistic, and conduct a formal test based on its posterior distribution. Extensive simulation studies demonstrate overall viability of the approach, and provide information on what factors affect its performance. Applying our method to a dataset containing oral and gut microbiome samples from 77 pancreatic cancer patients revealed several OTUs exhibiting consistent patterns between gut and mouth with respect to disease subtype. Our method is well powered for modest sample sizes and moderate strength of association and can be flexibly extended to other research settings using any currently established Bayesian analysis programs.
MSC:
92C70 Microbiology
62P10 Applications of statistics to biology and medical sciences; meta analysis
62F15 Bayesian inference
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Callahan, B. J., P. J. McMurdie and S. P. Holmes (2017): “Exact sequence variants should replace operational taxonomic units in marker-gene data analysis,” ISME J., 11, 2639-2643.; Callahan, B. J.; McMurdie, P. J.; Holmes, S. P., Exact sequence variants should replace operational taxonomic units in marker-gene data analysis, ISME J., 11, 2639-2643 (2017)
[2] Chai, H., H. Jiang, L. Lin and L. Liu (2018): “A marginalized two-part beta regression model for microbiome compositional data,” PLoS Comput. Biol., 14, e1006329.; Chai, H.; Jiang, H.; Lin, L.; Liu, L., A marginalized two-part beta regression model for microbiome compositional data, PLoS Comput. Biol., 14 (2018)
[3] Chen, E. Z. and H. Li (2016): “A two-part mixed-effects model for analyzing longitudinal microbiome compositional data,” Bioinformatics, 32, 2611-2617.; Chen, E. Z.; Li, H., A two-part mixed-effects model for analyzing longitudinal microbiome compositional data, Bioinformatics, 32, 2611-2617 (2016)
[4] Chen, C., C. Hemme, J. Beleno, Z. J. Shi, D. Ning, Y. Qin, Q. Tu, M. Jorgensen, Z. He, L. Wu and J. Zhou (2018): “Oral microbiota of periodontal health and disease and their changes after nonsurgical periodontal therapy,” ISME J., 12, 1210-1224.; Chen, C.; Hemme, C.; Beleno, J.; Shi, Z. J.; Ning, D.; Qin, Y.; Tu, Q.; Jorgensen, M.; He, Z.; Wu, L.; Zhou, J., Oral microbiota of periodontal health and disease and their changes after nonsurgical periodontal therapy, ISME J., 12, 1210-1224 (2018)
[5] Chiranjeevi, T., O. H. Prasad, U. Prasad, A. K. Kumar, V. Chakravarthi, P. B. Rao, P. Sarma, N. Reddy and M. Bhaskar (2014): “Identification of microbial pathogens in periodontal disease and diabetic patients of south indian population,” Bioinformation, 10, 241-244.; Chiranjeevi, T.; Prasad, O. H.; Prasad, U.; Kumar, A. K.; Chakravarthi, V.; Rao, P. B.; Sarma, P.; Reddy, N.; Bhaskar, M., Identification of microbial pathogens in periodontal disease and diabetic patients of south indian population, Bioinformation, 10, 241-244 (2014)
[6] Chung, M., N. Zhao, R. Meier, D. C. Koestler, G. Wu, E. D. Castillo, B. J. Paster, K. T. Kelsey and D. S. Michaud (2019): “Oral, gut, and pancreatic microbiome are correlated and exhibit consist co-abundance in patients with pancreatic diseases and cancer,” [Manuscript in Progress].; Chung, M.; Zhao, N.; Meier, R.; Koestler, D. C.; Wu, G.; Castillo, E. D.; Paster, B. J.; Kelsey, K. T.; Michaud, D. S., Oral, gut, and pancreatic microbiome are correlated and exhibit consist co-abundance in patients with pancreatic diseases and cancer (2019)
[7] Cohen, J. (1960): “A coefficient of agreement for nominal scales,” Educ. Psychol. Meas., 20, 37-46.; Cohen, J., A coefficient of agreement for nominal scales, Educ. Psychol. Meas., 20, 37-46 (1960)
[8] del Castillo, E., R. Meier, M. Chung, D. C. Koestler, T. Chen, B. J. Paster, K. P. Charpentier, K. T. Kelsey, J. Izard and D. S. Michaud (2019): “The microbiomes of pancreatic and duodenum tissue overlap and are highly subject specific but differ between pancreatic cancer and noncancer subjects,” Cancer Epidemiol. Biomark. Prev., 28, 370-383.; del Castillo, E.; Meier, R.; Chung, M.; Koestler, D. C.; Chen, T.; Paster, B. J.; Charpentier, K. P.; Kelsey, K. T.; Izard, J.; Michaud, D. S., The microbiomes of pancreatic and duodenum tissue overlap and are highly subject specific but differ between pancreatic cancer and noncancer subjects, Cancer Epidemiol. Biomark. Prev., 28, 370-383 (2019)
[9] Faith, J. J., J. L. Guruge, M. Charbonneau, S. Subramanian, H. Seedorf, A. L. Goodman, J. C. Clemente, R. Knight, A. C. Heath, R. L. Leibel, M. Rosenbaum and J. I. Gordon (2013): “The long-term stability of the human gut microbiota,” Science, 341, 1237439.; Faith, J. J.; Guruge, J. L.; Charbonneau, M.; Subramanian, S.; Seedorf, H.; Goodman, A. L.; Clemente, J. C.; Knight, R.; Heath, A. C.; Leibel, R. L.; Rosenbaum, M.; Gordon, J. I., The long-term stability of the human gut microbiota, Science, 341, 1237439 (2013)
[10] Fan, X., A. V. Alekseyenko, J. Wu, B. A. Peters, E. J. Jacobs, S. M. Gapstur, M. P. Purdue, C. C. Abnet, R. Stolzenberg-Solomon, G. Miller, J. Ravel, R. B. Hayes and J. Ahn (2016): “Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study,” Gut, 67, 120-127.; Fan, X.; Alekseyenko, A. V.; Wu, J.; Peters, B. A.; Jacobs, E. J.; Gapstur, S. M.; Purdue, M. P.; Abnet, C. C.; Stolzenberg-Solomon, R.; Miller, G.; Ravel, J.; Hayes, R. B.; Ahn, J., Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study, Gut, 67, 120-127 (2016)
[11] Fardini, Y., X. Wang, S. Témoin, S. Nithianantham, D. Lee, M. Shoham and Y. W. Han (2011): “Fusobacterium nucleatum adhesin FadA binds vascular endothelial cadherin and alters endothelial integrity,” Mol. Microbiol., 82, 1468-1480.; Fardini, Y.; Wang, X.; Témoin, S.; Nithianantham, S.; Lee, D.; Shoham, M.; Han, Y. W., Fusobacterium nucleatum adhesin FadA binds vascular endothelial cadherin and alters endothelial integrity, Mol. Microbiol., 82, 1468-1480 (2011)
[12] Fleiss, J. L. (1971): “Measuring nominal scale agreement among many raters,” Psychol. Bull., 76, 378-382.; Fleiss, J. L., Measuring nominal scale agreement among many raters, Psychol. Bull., 76, 378-382 (1971)
[13] Gloor, G. B., J. M. Macklaim, V. Pawlowsky-Glahn and J. J. Egozcue (2017): “Microbiome datasets are compositional: and this is not optional,” Front. Microbiol., 8, 2224.; Gloor, G. B.; Macklaim, J. M.; Pawlowsky-Glahn, V.; Egozcue, J. J., Microbiome datasets are compositional: and this is not optional, Front. Microbiol., 8, 2224 (2017)
[14] Goodman, B. and H. Gardner (2018): “The microbiome and cancer,” J. Pathol., 244, 667-676.; Goodman, B.; Gardner, H., The microbiome and cancer, J. Pathol., 244, 667-676 (2018)
[15] Lu, H., Z. Ren, A. Li, J. Li, S. Xu, H. Zhang, J. Jiang, J. Yang, Q. Luo, K. Zhou, S. Zheng and L. Li (2019): “Tongue coating microbiome data distinguish patients with pancreatic head cancer from healthy controls,” J. Oral Microbiol., 11, 1563409.; Lu, H.; Ren, Z.; Li, A.; Li, J.; Xu, S.; Zhang, H.; Jiang, J.; Yang, J.; Luo, Q.; Zhou, K.; Zheng, S.; Li, L., Tongue coating microbiome data distinguish patients with pancreatic head cancer from healthy controls, J. Oral Microbiol., 11, 1563409 (2019)
[16] Meier, R. (2019): “R scripts for simulation studies, analyses and examples related to pasta,” . [Online; accessed 08-April-2019].; Meier, R., R scripts for simulation studies, analyses and examples related to pasta (2019)
[17] Michaud, D. S., J. Izard, C. S. Wilhelm-Benartzi, D.-H. You, V. A. Grote, A. Tjønneland, C. C. Dahm, K. Overvad, M. Jenab, V. Fedirko, M. C. Boutron-Ruault, F. Clavel-Chapelon, A. Racine, R. Kaaks, H. Boeing, J. Foerster, A. Trichopoulou, P. Lagiou, D. Trichopoulos, C. Sacerdote, S. Sieri, D. Palli, R. Tumino, S. Panico, P. D. Siersema, P. H. Peeters, E. Lund, A. Barricarte, J.-M. Huerta, E. Molina-Montes, M. Dorronsoro, J. R. Quirós, E. J. Duell, W. Ye, M. Sund, B. Lindkvist, D. Johansen, K.-T. Khaw, N. Wareham, R. C. Travis, P. Vineis, H. B. B. de Mesquita and E. Riboli (2012): “Plasma antibodies to oral bacteria and risk of pancreatic cancer in a large european prospective cohort study,” Gut, 62, 1764-1770.; Michaud, D. S.; Izard, J.; Wilhelm-Benartzi, C. S.; You, D.-H.; Grote, V. A.; Tjønneland, A.; Dahm, C. C.; Overvad, K.; Jenab, M.; Fedirko, V.; Boutron-Ruault, M. C.; Clavel-Chapelon, F.; Racine, A.; Kaaks, R.; Boeing, H.; Foerster, J.; Trichopoulou, A.; Lagiou, P.; Trichopoulos, D.; Sacerdote, C.; Sieri, S.; Palli, D.; Tumino, R.; Panico, S.; Siersema, P. D.; Peeters, P. H.; Lund, E.; Barricarte, A.; Huerta, J.-M.; Molina-Montes, E.; Dorronsoro, M.; Quirós, J. R.; Duell, E. J.; Ye, W.; Sund, M.; Lindkvist, B.; Johansen, D.; Khaw, K.-T.; Wareham, N.; Travis, R. C.; Vineis, P.; de Mesquita, H. B. B.; Riboli, E., Plasma antibodies to oral bacteria and risk of pancreatic cancer in a large european prospective cohort study, Gut, 62, 1764-1770 (2012)
[18] Peng, X., G. Li and Z. Liu (2016): “Zero-inflated beta regression for differential abundance analysis with metagenomics data,” J. Comput. Biol., 23, 102-110.; Peng, X.; Li, G.; Liu, Z., Zero-inflated beta regression for differential abundance analysis with metagenomics data, J. Comput. Biol., 23, 102-110 (2016)
[19] Pushalkar, S., M. Hundeyin, D. Daley, C. P. Zambirinis, E. Kurz, A. Mishra, N. Mohan, B. Aykut, M. Usyk, L. E. Torres, G. Werba, K. Zhang, Y. Guo, Q. Li, N. Akkad, S. Lall, B. Wadowski, J. Gutierrez, J. A. K. Rossi, J. W. Herzog, B. Diskin, A. Torres-Hernandez, J. Leinwand, W. Wang, P. S. Taunk, S. Savadkar, M. Janal, A. Saxena, X. Li, D. Cohen, R. B. Sartor, D. Saxena and G. Miller (2018): “The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression,” Cancer Discov., 8, 403-416.; Pushalkar, S.; Hundeyin, M.; Daley, D.; Zambirinis, C. P.; Kurz, E.; Mishra, A.; Mohan, N.; Aykut, B.; Usyk, M.; Torres, L. E.; Werba, G.; Zhang, K.; Guo, Y.; Li, Q.; Akkad, N.; Lall, S.; Wadowski, B.; Gutierrez, J.; Rossi, J. A. K.; Herzog, J. W.; Diskin, B.; Torres-Hernandez, A.; Leinwand, J.; Wang, W.; Taunk, P. S.; Savadkar, S.; Janal, M.; Saxena, A.; Li, X.; Cohen, D.; Sartor, R. B.; Saxena, D.; Miller, G., The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression, Cancer Discov., 8, 403-416 (2018)
[20] Schober, P., C. Boer and L. A. Schwarte (2018): “Correlation coefficients,” Anesth. Analg., 126, 1763-1768.; Schober, P.; Boer, C.; Schwarte, L. A., Correlation coefficients, Anesth. Analg., 126, 1763-1768 (2018)
[21] Shi, P., A. Zhang and H. Li (2016): “Regression analysis for microbiome compositional data,” Ann. Appl. Stat., 10, 1019-1040.; Shi, P.; Zhang, A.; Li, H., Regression analysis for microbiome compositional data, Ann. Appl. Stat., 10, 1019-1040 (2016) · Zbl 1398.62346
[22] Tsilimigras, M. C. and A. A. Fodor (2016): “Compositional data analysis of the microbiome: fundamentals, tools, and challenges,” Ann. Epidemiol., 26, 330-335.; Tsilimigras, M. C.; Fodor, A. A., Compositional data analysis of the microbiome: fundamentals, tools, and challenges, Ann. Epidemiol., 26, 330-335 (2016)
[23] Xia, Y., J. Sun and D.-G. Chen (2018): “Modeling zero-inflated microbiome data.” In: Jiahuan Chen, (ed.), Statistical Analysis of Microbiome Data with R. Springer, Singapore. pp. 453-496.; Xia, Y.; Sun, J.; Chen, D.-G., Analysis of Microbiome Data with RStatistical Analysis of Microbiome Data with R (2018)
[24] Zhang, X., H. Mallick, Z. Tang, L. Zhang, X. Cui, A. K. Benson and N. Yi (2017): “Negative binomial mixed models for analyzing microbiome count data,” BMC Bioinform., 18:4.; Zhang, X.; Mallick, H.; Tang, Z.; Zhang, L.; Cui, X.; Benson, A. K.; Yi, N., Negative binomial mixed models for analyzing microbiome count data, BMC Bioinform., 18, 4 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.