zbMATH — the first resource for mathematics

A pure geometric approach to stellar structure: mass-radius relations. (English) Zbl 1393.85002
85A15 Galactic and stellar structure
51P05 Classical or axiomatic geometry and physics (should also be assigned at least one other classification number from Sections 70-XX–86-XX)
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C15 Exact solutions to problems in general relativity and gravitational theory
Full Text: DOI
[1] Wanas, M. I., The accelerating expansion of the universe and torsion energy, Int. J. Modern Phys. A, 22, 5709-5716, (2007) · Zbl 1142.83314
[2] Wanas, M. I.; Ammar, S. A., A pure geometric approach to stellar structure, Cent. Eur. J. Phys., 11, 936-948, (2013)
[3] Wanas, M. I.; Ammar, S. A., Space-time structure and electromagnetism, Modern Phys. Lett. A, 25, 1705-1721, (2010) · Zbl 1193.83040
[4] Mikhail, F. I., Tetrad vector field and generalizing the theory of relativity, Ain Shams Sci. Bull., 6, 87-111, (1962)
[5] Wanas, M. I., Absolute parallelism geometry: developments, applications and problems, Stud. Cercet. Stiin. Ser. Mat. Univ. Bacau, 10, 297-309, (2001) · Zbl 1061.53504
[6] P. Dolan and W. H. McCrea, Fundamental identity in electrodynamics and general relativity (1963) (Personal communication to M. I. Wanas in 1973).
[7] M. I. Wanas, A generalized field theory and its applications in cosmology, Ph.D. Thesis, Cairo University, Egypt (1975).
[8] Mikhail, F. I.; Wanas, M. I., Ageneralized field theory I. field equations, Proc. R. Soc. London A, 356, 471-481, (1977)
[9] Robertson, H. P., Groups of motions in spaces admitting absolute parallelism, Ann. Math. Princeton, 33, 496-520, (1932) · JFM 58.0769.02
[10] Maxted, P. F. L.; Odonoghue, D.; Morales-Rueda, L.; Napiwotzki5, R.; Smalley, B., The mass and radius of the M-dwaf in the short-period eclipsing binary R R caeli, Mon. Not. R. A. S., 376, 919-928, (2007)
[11] Althaues, L. G.; Gareia-Berro, E.; Isern, J.; Carsico, A. H., Mass-radius relations for massive white dwarf stars, Astron. Astrophys., 441, 689-694, (2005)
[12] Awadalla, N. S.; Hanna, M. A., Absolute parameters and mass-radius- luminosity relations for the sub- types of W uma binaries, J. Kor. Astron. Soc., 38, 43-57, (2005)
[13] Zhang, C. M.; Yin, H. X.; Kojima, Y.; Chang, H. K.; Xu, R. X.; Li, X. D.; Zhang, B.; Kiziltan, B., Measuring neutron star mass and radius with three mass-radius relation, Mon. Not. R. A. S., 374, 232-236, (2007)
[14] Parsons, S. G.; Marsh, T. R.; Copperwheat, C. M.; Dhillon, V. S.; Littlefair, S. P.; Gansicke, B. T.; Hickman, R., Precise mass and radius values for white dwarf and low mass dwarf in the pre- cataclysmic N N serpents, Mon. Not. R. A. S., 402, 2591-2608, (2010)
[15] Bera, P.; Bhattacharya, D., Mass-radius relation of strongly magnetized white dwarfs: depends on field geometry, GR effects and electrostatic corrections to the EOS, Mon. Not. R. H. S., 456, 3375-3385, (2016)
[16] S. Stoytcho and D. D. Dooneva, Comment on the mass-radius relation for neutron stars in \(f(R)\) gravity, arxiv: 1512:05711 (2015).
[17] Pyrzas, S.; Gansicke, B. T.; Marsh, T. R.; Aungwerojwit, A.; Rebassa-Mansergas, A.; Rodrguez-Gil, P.; Southworth, J.; Schreiber, M. R.; Nebot Gomez-Moran, A.; Koester, D., Post-common envelope binaries from SDSS-V. for eclipsing white dwarf main-sequence binaries, Mon. Not. R. A. S., 394, 978-994, (2009)
[18] G. W. Collins ∐, The fundamentals of stellar astrophysics (2003).
[19] Yang, Y. J.; Qian, S.-B., Deep low mass ratio overcontact binary systems. XIV. a statistical analysis of 46 sample binaries, Astron. J., 150, 69-75, (2015)
[20] Carvalho, G. A.; Marinho, R. M. Jr.; Malher, M., Mass-radius diagram for compact stars, J. Phys., 630, 012058, (2015)
[21] Carvalho, G. A.; Marinho, R. M. Jr.; Malherio, M., General relativistic effects in the structure of massive white dwarfs, Gen. Relativ. Gravit., 38-50, (2018) · Zbl 1392.83012
[22] Astashenok, A. V.; Capozziello, S.; Odintsov, S. D., Further stable neutron star models from \(f(R)\) gravity, J. Cosmol. Astrophys., 2013, 040, (2013)
[23] Astashenok, A. V.; Capozziello, S.; Odintsov, S. D., Extreme neutron stars from extended theories of gravity, J. Cosmol. Astrophys., 2015, 01, (2015)
[24] Capozziello, S.; De Laurentis, M.; Farinelli, R.; Odintsov, S. D., The mass-radius relation for neutron stars in \(f(R)\) gravity, Phys. Rev. D, 93, 023501, (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.