Baydemir, Pinar; Merdan, Huseyin; Karaoglu, Esra; Sucu, Gokce Complex dynamics of a discrete-time prey-predator system with Leslie type: stability, bifurcation analyses and chaos. (English) Zbl 1453.39014 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 10, Article ID 2050149, 21 p. (2020). Applying the forward Euler method to the continuous-time prey-predator model with Leslie type functional response, \[ \left\{ \begin{array}{rcl} \frac {dN(t)}{dt} &=& r_1N(t)-\epsilon P(t)N(t), \\ \frac {dP(t)}{dt}&=& P(t)\left(r_2-\theta\frac {P(t)}{N(t)}\right), \end {array} \right. \] the authors obtain the following discrete-time prey-predator system, \[ \left\{ \begin {array}{rcl} N_{t+1}&=& N_t+\delta N_t(r_1-\epsilon P_t), \\ P_{t+1} &=& P_t+\delta P_t\left(r_2-\theta\frac{P_{t+1}}{N_{t+1}}\right), \end {array} \right. \] where \(N\) and \(P\) represent prey and predator, respectively. Here \(\delta\) is the integral step size. The discrete system has only a single positive equilibrium \((\overline{N},\overline{P})=(\frac {\theta r_1}{\epsilon r_2},\frac {r_1}{\epsilon})\). First, through linearization, conditions on the local stability of \((\overline{N},\overline{P})\) are obtained. Then, choosing \(\delta\) as the bifurcation parameter, the flip bifurcation and the Neimark-Sacker bifurcation arising from \((\overline{N},\overline{P})\) are analyzed by employing the center manifold theorem and normal form theory. These theoretical results are not only supported but also extended by numerical simulations. For example, large values of \(\delta\) can lead to chaotic behavior, which is impossible for the continuous-time counterpart. Reviewer: Yuming Chen (Waterloo) MSC: 39A60 Applications of difference equations 65L05 Numerical methods for initial value problems 65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations 65P20 Numerical chaos 37N25 Dynamical systems in biology 39A30 Stability theory for difference equations 39A28 Bifurcation theory for difference equations 92D25 Population dynamics (general) Keywords:discrete prey-predator system; stability; flip bifurcation; Neimark-Sacker bifurcation; chaotic behavior PDF BibTeX XML Cite \textit{P. Baydemir} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 10, Article ID 2050149, 21 p. (2020; Zbl 1453.39014) Full Text: DOI References: [1] Allen, L. J. S. [2007] An Introduction to Mathematical Biology (Pearson). [2] Alligood, K. T., Sauer, T. D. & Yorke, J. A. [1996] Chaos: An Introduction to Dynamical Systems (Springer-Verlag, NY). · Zbl 0867.58043 [3] Brauer, F. & Castillo-Chavez, C. [2001] Mathematical Models in Population Biology and Epidemiology (Springer, NY). · Zbl 0967.92015 [4] Celik, C. [2009] “ Hopf bifurcation of a ratio dependent predator-prey system with time delay,” Chaos Solit. Fract.42, 1474-1484. · Zbl 1198.34149 [5] Chen, B. & Chen, J. [2012] “ Bifurcation and chaotic behavior of a singular biological economic system,” Appl. Math. Comput.219, 2371-2386. · Zbl 1308.92081 [6] Danca, M. F., Feckan, M., Kuznetsov, N. & Chen, G. [2019] “ Rich dynamics and anticontrol of extinction in a prey-predator system,” Nonlin. Dyn.98, 1421-1445. [7] Elsadany, A. A., El-Metwally, H. A., Elabbasy, E. M. & Agiza, H. N. [2012] “ Chaos and bifurcation of a nonlinear discrete prey-predator system,” Comput. Ecol. Soft.2, 169-180. [8] Elabbasy, E. M., Elsadany, A. A. & Zhang, Y. [2014] “ Bifurcation analysis and chaos in a discrete reduced Lorenz system,” Appl. Math. Comput.228, 184-194. · Zbl 1364.37083 [9] Freedman, H. I. [1980] Deterministic Mathematical Models in Population Ecology (Marchel Dekker, NY). [10] Ghaziani, R. K., Govaerts, W. & Sonck, C. [2012] “ Resonance and bifurcation in a discrete-time predator-prey system with Holling functional response,” Nonlin. Anal.: Real World Appl.13, 1451-1465. · Zbl 1239.39011 [11] Gkana, A. & Zachilas, L. [2015] “ Non-overlapping generation species: Complex prey-predator interactions,” Int. J. Nonlin. Sci. Numer. Simulat.16, 207-219. · Zbl 1401.92158 [12] He, Z. & Lai, X. [2011] “ Bifurcation and chaotic behavior of a discrete time predator-prey system,” Nonlin. Anal.: Real World Appl.12, 403-417. · Zbl 1202.93038 [13] Hu, Z., Teng, Z. & Zhang, L. [2014] “ Stability and bifurcation analysis in a discrete SIR epidemic model,” Math. Comput. Simulat.97, 80-93. [14] Hu, D. & Cao, H. [2015] “ Bifurcation and chaos in a discrete-time predator-prey system of Holling and Leslie type,” Commun. Nonlin. Sci. Numer. Simulat.22, 702-715. · Zbl 1331.92125 [15] Isik, S. [2019] “ A study of stability and bifurcation analysis in discrete-time predator-prey system involving the Allee effect,” Int. J. Biomath.12, 1950011. · Zbl 1405.39008 [16] Jana, D. [2013] “ Chaotic dynamics of a discrete predator-prey system with prey refuge,” Appl. Math. Comput.224, 848-865. · Zbl 1334.92344 [17] Jing, Z. J., Chang, Y. & Guo, B. [2004] “ Bifurcation and chaos in discrete FitzHugh-Nagumo system,” Chaos Solit. Fract.21, 701-720. · Zbl 1048.37526 [18] Jing, Z. & Yang, J. [2006] “ Bifurcation and chaos in discrete-time predator-prey system,” Chaos Solit. Fract.27, 259-277. · Zbl 1085.92045 [19] Karaoglu, E. & Merdan, H. [2014a] “ Hopf bifurcation analysis for a ratio-dependent predator-prey system involving two delays,” ANZIAM J.55, 214-231. · Zbl 1304.34138 [20] Karaoglu, E. & Merdan, H. [2014b] “ Hopf bifurcations of a ratio-dependent predator-prey model involving two discrete maturation time delays,” Chaos Solit. Fract.68, 159-168. · Zbl 1354.92065 [21] Kuznetsov, Y. A. [1998] Elements of Applied Bifurcation Theory (Springer-Verlag, NY). · Zbl 0914.58025 [22] Liu, X. & Xiao, D. [2007] “ Complex dynamic behaviors of a discrete-time predator-prey system,” Chaos Solit. Fract.32, 80-94. · Zbl 1130.92056 [23] Lotka, A. J. [1925] Elements of Physical Biology (Williams & Wilkins Company, Baltimore). · JFM 51.0416.06 [24] May, R. M. [1974] “ Biological populations with nonoverlapping generations: Stable points, stable cycles, and chaos,” Science186, 645-647. [25] May, R. M. [1976] “ Simple mathematical models with very complicated dynamics,” Nature261, 459-467. · Zbl 1369.37088 [26] Murray, J. D. [2002] Mathematical Biology I: An Introduction (Springer-Verlag, NY). · Zbl 1006.92001 [27] Olsen, L. F. & Degn, H. [1985] “ Chaos in biological systems,” Q. Rev. Biophys.18, 165-225. [28] Salman, S. M., Yousef, A. M. & Elsadany, A. A. [2016] “ Stability, bifurcation analysis and chaos control of a discrete predator-prey system with square root functional response,” Chaos Solit. Fract.93, 20-31. · Zbl 1372.37134 [29] Sánchez, C. M. V. & Restrepo, J. G. [2010] “ Parameter estimation of a predator-prey model using a genetic algorithm,” Proc. Conf.: IEEE Andescon 2010, at Bogota, Columbia, . [30] Singh, A., Elsadany, A. A. & Elsonbaty, A. [2019] “ Complex dynamics of a discrete fractional-order Leslie-Gower predator-prey model,” Math. Meth. Appl. Sci.42, 3992-4007. · Zbl 1423.39022 [31] Strogatz, S. [1994] Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (Perseus Books Publishing, NY). [32] Summers, D., Cranford, J. G. & Healey, B. P. [2000] “ Chaos in periodically forced discrete-time ecosystem models,” Chaos Solit. Fract.11, 2331-2342. · Zbl 0964.92044 [33] Volterra, V. [1926] “ Variazioni e fluttuazioni del numero di’individui in specie animali conviventi,” Mem. R. Acad. Naz. Dei Lincei, Ser.2, 31-113. · JFM 52.0450.06 [34] Wang, C. & Li, X. [2015] “ Further investigations into the stability and bifurcation of a discrete predator-prey model,” J. Math. Anal. Appl.422, 920-939. · Zbl 1310.37045 [35] Wiggins, S. [2003] Introduction to Applied Nonlinear Dynamical Systems and Chaos (Springer-Verlag, NY). · Zbl 1027.37002 [36] Xiao, Y., Cheng, D. & Tang, S. [2002] “ Dynamic complexities in predator-prey ecosystem models with age-structure for predator,” Chaos Solit. Fract.14, 1403-1411. · Zbl 1032.92033 [37] Zhang, G., Shen, Y. & Chen, B. [2014] “ Bifurcation analysis in a discrete differential-algebraic predator-prey system,” Appl. Math. Model.38, 4835-4848. · Zbl 1428.92098 [38] Zhang, L. & Zou, L. [2018] “ Bifurcations and control in a discrete predator-prey model with strong Allee effect,” Int. J. Bifurcation and Chaos28, 1850062-1-29. · Zbl 1390.39060 [39] Zhou, S. R., Liu, Y. F. & Wang, G. [2005] “ The stability of predator-prey system subject to the Allee effects,” Theor. Popul. Biol.67, 23-31. · Zbl 1072.92060 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.