×

zbMATH — the first resource for mathematics

Classicalization by phase space measurements. (English) Zbl 1392.81168
MSC:
81S30 Phase-space methods including Wigner distributions, etc. applied to problems in quantum mechanics
81S22 Open systems, reduced dynamics, master equations, decoherence
81P15 Quantum measurement theory, state operations, state preparations
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
97M50 Physics, astronomy, technology, engineering (aspects of mathematics education)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Schlosshauer M 2007 Decoherence: and the Quantum-to-Classical Transition (Heidelberg: Springer-Verlag)
[2] Busch P, Lahti P, Pellonpää J and Ylinen K 2016 Quantum Measurement (Berlin: Springer)
[3] Nimmrichter S 2014 Macroscopic Matter Wave Interferometry (Berlin: Springer)
[4] Case W B 2008 Am. J. Phys.76 937-46
[5] Lovett B W and Nazir A 2009 Eur. J. Phys.30 S89
[6] Pearle P 2012 Eur. J. Phys.33 805
[7] Xu Y-J, Li C, Ma Y-H and Li R-S 2018 Eur. J. Phys.39 015303
[8] Woit P 2017 Quantum Theory, Groups and Representations: An Introduction (Berlin: Springer)
[9] Thyssen P and Ceulemans A 2017 Shattered Symmetry: Group Theory from the Eightfold Way to the Periodic Table (Oxford: Oxford University Press) · Zbl 1383.20001
[10] Klimov A and Chumakov S 2009 A Group-Theoretical Approach to Quantum Optics (New York: Wiley)
[11] Serafini A 2017 Quantum Continuous Variables: A Primer of Theoretical Methods (Boca Raton, FL: CRC Press)
[12] Zurek W H, Habib S and Paz J P 1993 Phys. Rev. Lett.70 1187-90
[13] Tarasov V 2008 Quantum Mechanics of Non-Hamiltonian and Dissipative Systems (Amsterdam: Elsevier) · Zbl 1213.81004
[14] de Gosson M A 2017 Emergence of the Quantum from the Classical: Mathematical Aspects of Quantum Processes (Singapore: World Scientific)
[15] Ozorio de Almeida A M, Vallejos R O and Saraceno M 2005 J. Phys. A: Math. Gen.38 1473
[16] Barnett S and Radmore P 2002 Methods in Theoretical Quantum Optics (Oxford: Clarendon) · Zbl 1027.81044
[17] Bishop R F and Vourdas A 1994 Phys. Rev. A 50 4488-501
[18] Haroche S and Raimond J 2006 Exploring the Quantum: Atoms, Cavities, and Photons (Oxford: Oxford University Press) · Zbl 1118.81001
[19] Klauder J and Sudarshan E 2006 Fundamentals of Quantum Optics (New York: Dover)
[20] Agarwal G S and Wolf E 1970 Phys. Rev. D 2 2161-86
[21] Kim Y and Noz M 1991 Phase Space Picture of Quantum Mechanics: Group Theoretical Approach (Singapore: World Scientific)
[22] Soto F and Claverie P 1983 J. Math. Phys.24 97-100
[23] Zurek W H 2001 Nature412 712-7
[24] Cohen L 1966 J. Math. Phys.7 781-6
[25] Von Neumann J 1955 Mathematical Foundations of Quantum Mechanics (Princeton, NJ: Princeton University Press) · Zbl 0064.21503
[26] Hanson F 2007 Applied Stochastic Processes and Control for Jump Diffusions: Modeling, Analysis, and Computation (Philadelphia, PA: Society for Industrial and Applied Mathematics) · Zbl 1145.60003
[27] Cresser J D, Barnett S M, Jeffers J and Pegg D T 2006 Opt. Commun.264 352-61
[28] Breuer H and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press) · Zbl 1053.81001
[29] Walker N 1987 J. Mod. Opt.34 15-60
[30] Louisell W 1990 Quantum Statistical Properties of Radiation (New York: Wiley) · Zbl 1049.81683
[31] Agarwal G S 1971 Phys. Rev. A 4 739-47
[32] Jacobs K and Steck D A 2006 Contemp. Phys.47 279-303
[33] Brodier O and Ozorio de Almeida A M 2004 Phys. Rev. E 69 016204
[34] Zelevinsky V 2011 Quantum Physics: Volume 1: from Basics to Symmetries and Perturbations (New York: Wiley) · Zbl 1219.81001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.