×

On the exact and numerical complex travelling wave solution to the nonlinear Schrödinger equation. (English) Zbl 07355103

Summary: In this article, the Nonlinear Schrödinger (NLS) equation, which is very important in physics, have been discussed. The analytical solution of this equation with the \(1/G'\)-expansion method and its numerical solutions with the Finite Difference Method have been presented. \(1/G'\)-expansion method has been successfully applied to NLS equation and different type complex hyperbolic travelling wave solutions have been produced. An initial condition for the NLS equation has been created using this solution. This solution has been used to create the initial condition required for FDM. Truncation Error, Stability analysis and \(L_2\) and \(L_\infty\) norm errors of the numerical results obtained have been examined. Besides, FDM has been successfully applied to NLS equation and numerical solutions have been produced. Besides, both analytical and numerical solutions are supported with graphics and tables. The results obtained by this numerical method have been compared with the exact solution.

MSC:

65L12 Finite difference and finite volume methods for ordinary differential equations
74S20 Finite difference methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ali, K. K.; Ismael, H. F.; Mahmood, B. A.; Yousif, M. A., MHD Casson fluid with heat transfer in a liquid film over unsteady stretching plate, Int. J. Adv. Appl. Sci, 4, 1, 55-58 (2017)
[2] Ali, K. K.; Yilmazer, R.; Yokus, A.; Bulut, H., Analytical solutions for the \(####\)-dimensional nonlinear extended quantum Zakharov-Kuznetsov equation in plasma physics, Phys. A Stat. Mech. Appl. (2020) · Zbl 1451.35156
[3] Alt, E. O.; Mukhamedzhanov, A. M., Asymptotic solution of the Schrödinger equation for three charged particles, Phys. Rev. A., 47, 3, 2004 (1993)
[4] Baskonus, H. M.; Sulaiman, T. A.; Bulut, H., Dark, bright and other optical solitons to the decoupled nonlinear Schrödinger equation arising in dual-core optical fibers, Opt. Quant. Electron., 50, 4, 165 (2018)
[5] Baskonus, H. M.; Sulaiman, T. A.; Bulut, H.; Aktürk, T., Investigations of dark, bright, combined dark-bright optical and other soliton solutions in the complex cubic nonlinear Schrödinger equation with δ-potential, Superlattices Microstruct., 115, 19-29 (2018)
[6] Bulut, H.; Sulaiman, T. A.; Demirdag, B., Dynamics of soliton solutions in the chiral nonlinear Schrödinger equations, Nonlinear. Dyn., 91, 3, 1985-1991 (2018)
[7] Bulut, H.; Sulaiman, T. A.; Baskonus, H. M., Optical solitons to the resonant nonlinear Schrödinger equation with both spatio-temporal and inter-modal dispersions under Kerr law nonlinearity, Optik, 163, 49-55 (2018)
[8] Cariello, F.; Tabor, M., Painlevé expansions for nonintegrable evolution equations, Phys. D Nonlin. Phenom., 39, 1, 77-94 (1989) · Zbl 0687.35093
[9] Dong, S. H.; Garcia-Ravelo, J., Exact solutions of the s-wave Schrödinger equation with Manning Rosen potential, Phys. Scripta, 75, 3, 307 (2007) · Zbl 1111.81044
[10] Drazin, P. G.; Jhonson, R. S., Solitons: An Introduction (1989), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 0661.35001
[11] Durur, H., Different types analytic solutions of the (1 + 1)-dimensional resonant nonlinear Schrödinger’s equation using (G/G)-expansion method, Modern Phys. Lett. B, 34, 3 (2020)
[12] Dyachenko, S.; Newell, A. C.; Pushkarev, A.; Zakharov, V. E., Optical turbulence: Weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation, Phys. D Nonlin. Phenom., 57, 1-2, 96-160 (1992) · Zbl 0767.35082
[13] Dysthe, K. B., Note on a modification to the nonlinear Schrödinger equation for application to deep water waves, Proc. R. Soc. Lond. A. Math. Phys. Sci., 369, 1736, 105-114 (1979) · Zbl 0429.76014
[14] El-Sayed, S. M.; Kaya, D., A numerical solution and an exact explicit solution of the NLS equation, Appl. Math. Comput., 172, 2, 1315-1322 (2006) · Zbl 1088.65088
[15] Esen, A.; Sulaiman, T. A.; Bulut, H.; Baskonus, H. M., Optical solitons to the space-time fractional \(####\)-dimensional coupled nonlinear Schrödinger equation, Optik, 167, 150-156 (2018)
[16] Eslami, M., Trial solution technique to chiral nonlinear Schrödinger’s equation in \(####\)-dimensions, Nonlin. Dyn., 85, 2, 813-816 (2016)
[17] Eslami, M.; Neirameh, A., New exact solutions for higher order nonlinear Schrödinger equation in optical fibers, Opt. Quant. Electron., 50, 1, 47 (2018)
[18] Hu, X. B.; Ma, W. X., Application of Hirota’s bilinear formalism to the Toeplitz lattice-some special soliton-like solutions, Phys. Lett. A, 293, 3-4, 161-165 (2002) · Zbl 0985.35072
[19] Imed, G.; Abderrahmen, B., Numerical solution of the \(####\)-dimensional Boussinesq equation with initial condition by homotopy perturbation method, Appl. Math. Sci., 6, 117-120, 5993-6002 (2012) · Zbl 1262.65144
[20] Jafari, H., Kadem, A., Baleanu, D., and Yilmaz, T., Solutions of the Fractional Davey-Stewartson Equations with Variational Iteration Method, 2012.
[21] Kalogiratou, Z.; Monovasilis, T.; Simos, T. E., New modified Runge-Kutta-Nyström methods for the numerical integration of the Schrödinger equation, Comput. Math. Appl., 60, 6, 1639-1647 (2010) · Zbl 1202.65092
[22] Karpman, V. I.; Krushkal, E. M., Modulated waves in nonlinear dispersive media, Soviet J. Exp. Theor. Phys., 28, 277 (1969)
[23] Khuri, S. A., A complex tanh-function method applied to nonlinear equations of Schrödinger type, Chaos Solitons Fract., 20, 5, 1037-1040 (2004) · Zbl 1049.35156
[24] Knight, P. L.; Miller, A., Optical Solitons: Theory and Experiment, Vol. 10 (1992), Cambridge University Press
[25] Kurt, A.; Tasbozan, O.; Durur, H., The exact solutions of conformable fractional partial differential equations using new sub equation method, Fund. J. Math. Appl., 2, 2, 173-179 (2019)
[26] Liu, Q.; Chen, L., Time-space fractional model for complex cylindrical ion-acoustic waves in ultrarelativistic plasmas, Complexity, 2020 (2020) · Zbl 1441.35213
[27] Liu, Q.; Zhang, R.; Yang, L.; Song, J., A new model equation for nonlinear Rossby waves and some of its solutions, Phys. Lett. A, 383, 6, 514-525 (2019) · Zbl 1486.76107
[28] Nishino, A.; Umeno, Y.; Wadati, M., Chiral nonlinear Schrödinger equation, Chaos Solitons Fract., 9, 7, 1063-1069 (1998) · Zbl 0932.35190
[29] Ogawa, T.; Tsutsumi, Y., Blow-up of H1 solution for the nonlinear Schrödinger equation, J. Differ. Equ., 92, 2, 317-330 (1991) · Zbl 0739.35093
[30] Pelinovsky, D. E.; Afanasjev, V. V.; Kivshar, Y. S., Nonlinear theory of oscillating, decaying, and collapsing solitons in the generalized nonlinear Schrödinger equation, Phys. Rev. E., 53, 2, 1940 (1996)
[31] Serkin, V. N.; Hasegawa, A., Novel soliton solutions of the nonlinear Schrödinger equation model, Phys. Rev. Lett., 85, 21, 4502 (2000)
[32] Simos, T. E., Exponentially and trigonometrically fitted methods for the solution of the Schrödinger equation, Acta. Appl. Math., 110, 3, 1331-1352 (2010) · Zbl 1192.65111
[33] Sjölin, P., Regularity of solutions to the Schrödinger equation, Duke Math. J., 55, 3, 699-715 (1987) · Zbl 0631.42010
[34] Subas, M.; Durur, H., On the stability of the solution in an optimal control problem for a Schrödinger equation, Appl. Math. Comput., 249, 521-526 (2014) · Zbl 1338.49054
[35] Sulaiman, T. A.; Yavuz, M.; Bulut, H.; Baskonus, H. M., Investigation of the fractional coupled viscous Burgers’ equation involving Mittag-Leffler kernel, Phys. A Stat. Mech. Appl., 527 (2019) · Zbl 07568257
[36] Sulem, C.; Sulem, P. L., The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse, Vol. 139 (2007), Springer Science \(####\) Business Media · Zbl 0867.35094
[37] Taha, T. R.; Ablowitz, M. I., Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation, J. Comput. Phys., 55, 2, 203-230 (1984) · Zbl 0541.65082
[38] Yavuz, M.; Ozdemir, N., Numerical inverse Laplace homotopy technique for fractional heat equations, Thermal Sci., 22, 1, 185-194 (2018)
[39] Yavuz, M. and Yokus, A, Analytical and numerical approaches to nerve impulse model of fractional order, Numer. Methods Partial Differ. Equ.
[40] Yokus, A., Comparison of Caputo and conformable derivatives for time-fractional Korteweg-de Vries equation via the finite difference method, Int. J. Modern Phys. B, 32, 29 (2018) · Zbl 1423.35421
[41] Yokus, A., Numerical solutions of time fractional Korteweg-de Vries equation and its stability analysis, Commun. Faculty Sci. Univ. Ankara Ser. A1 Math. Stat., 68, 1, 353-361 (2019) · Zbl 1487.65124
[42] Yokus, A., On the exact and numerical solutions to the FitzHugh-Nagumo equation, Int. J. Modern Phys. B (2020) · Zbl 1443.37053
[43] Yokus, A.; Bulut, H., On the numerical investigations to the Cahn-Allen equation by using finite difference method, Int. J. Opt. Control: Theories Appl. (IJOCTA), 9, 1, 18-23 (2018)
[44] Yokus, A.; Kaya, D., Comparison exact and numerical simulation of the traveling wave solution in nonlinear dynamics, Int. J. Modern Phys. B, 34, 29 (2020) · Zbl 1454.35329
[45] Yu, J.; Dong, S. H.; Sun, G. H., Series solutions of the Schrödinger equation with position-dependent mass for the Morse potential, Phys. Lett. A, 322, 5-6, 290-297 (2004) · Zbl 1118.81469
[46] Zhang, R.; Liu, Q.; Yang, L.; Song, J., Nonlinear planetary-synoptic wave interaction under generalized beta effect and its solutions, Chaos Solitons Fractals, 122, 270-280 (2019) · Zbl 1448.86010
[47] Zhang, R.; Yang, L.; Liu, Q.; Yin, X., Dynamics of nonlinear Rossby waves in zonally varying flow with spatial-temporal varying topography, Appl. Math. Comput., 346, 666-679 (2019) · Zbl 1428.76224
[48] Zhu, Q.; Zhou, Z.; Wang, L., Exact solutions for a coupled discrete nonlinear Schrödinger system with a saturation nonlinearity, Appl. Math. Lett., 74, 7-14 (2017) · Zbl 1378.39006
[49] Zhu, Q.; Zhou, Z.; Luo, T., Orbital instability of standing waves for the Klein-Gordon-Schrödinger system with quadratic-cubic nonlinearity, J. Math. Anal. Appl., 456, 2, 1329-1346 (2017) · Zbl 1430.35025
[50] Zhu, Q.; Zhou, Z.; Wang, L., Existence and stability of discrete solitons in nonlinear Schrödinger lattices with hard potentials, Phys. D Nonlin. Phenom., 403 (2020) · Zbl 1490.35466
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.