×

zbMATH — the first resource for mathematics

Partially-honest Nash implementation: a full characterization. (English) Zbl 1451.91057
Summary: A partially-honest individual is a person who follows the maxim, “Do not lie if you do not have to”, to serve your material interest. By assuming that the mechanism designer knows that there is at least one partially-honest individual in a society of \(n\ge 3\) individuals, a social choice rule that can be Nash implemented is termed partially-honestly Nash implementable. The paper offers a complete characterization of the (unanimous) social choice rules that are partially-honestly Nash implementable. When all individuals are partially-honest, then any (unanimous) rule is partially-honestly Nash implementable. An account of the welfare implications of partially-honest Nash implementation is provided in a variety of environments.
MSC:
91B14 Social choice
91B03 Mechanism design theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abreu, D.; Sen, A., Subgame perfect implementation: a necessary and almost sufficient condition, J. Econ. Theory, 50, 285-299 (1990) · Zbl 0694.90010
[2] Abreu, D.; Sen, A., Virtual implementation in Nash equilibrium, Econometrica, 59, 997-1021 (1991) · Zbl 0732.90007
[3] Corchón, LC; Herrero, C., A decent proposal, Span. Econ. Rev., 6, 107-125 (2004)
[4] Dasgupta, P.; Hammond, P.; Maskin, E., The implementation of social choice rules: some general results on incentive compatibility, Rev. Econ. Stud., 46, 185-216 (1979) · Zbl 0413.90007
[5] de Castro, LI; Liu, Z.; Yannelis, NC, Ambiguous implementation: the partition model, Econ. Theory, 63, 233-261 (2017) · Zbl 1404.91153
[6] Driesen, B., Lombardi, M., Peters, H.: Feasible sets, comparative risk aversion, and comparative uncertainty aversion in bargaining. Available at Maastricht University, Research Memoranda 15 (2015) · Zbl 1368.91107
[7] Dutta, B.; Sen, A., A necessary and sufficient condition for two-person Nash implementation, Rev. Econ. Stud., 58, 121-128 (1991) · Zbl 0717.90005
[8] Dutta, B.; Sen, A.; Vohra, R., Nash implementation through elementary mechanisms in economic environments, Econ. Des., 1, 173-204 (1995)
[9] Dutta, B.; Sen, A., Nash implementation with partially honest individuals, Games Econ. Behav., 74, 154-169 (2012) · Zbl 1278.91053
[10] Gilboa, I.; Schmeidler, D., Maximin expected utility with non-unique prior, J. Math. Econ., 18, 141-153 (1989) · Zbl 0675.90012
[11] Guo, H., Yannelis, N.C.: Full implementation under ambiguity. Working paper (2018)
[12] Howard, JV, A social choice rule and its implementation in perfect equilibrium, J. Econ. Theory, 56, 142-159 (1992) · Zbl 0764.90013
[13] Jackson, MO, Bayesian implementation, Econometrica, 59, 461-477 (1991) · Zbl 0735.90002
[14] Jackson, MO, Implementation in undominated strategies: a look at bounded mechanisms, Rev. Econ. Stud., 59, 757-775 (1992) · Zbl 0771.90004
[15] Jackson, MO, A crash course in implementation theory, Soc. Choice Welf., 18, 655-708 (2001) · Zbl 1069.91557
[16] Kalai, E.; Ledyard, JO, Repeated implementation, J. Econ. Theory, 83, 308-317 (1998) · Zbl 0915.90005
[17] Kara, T.; Sönmez, T., Nash implementation of matching rules, J. Econ. Theory, 68, 425-439 (1996) · Zbl 0854.90002
[18] Kartik, N.; Tercieux, O., Implementation with evidence, Theor. Econ., 7, 323-355 (2012) · Zbl 1397.91190
[19] Kartik, N.; Tercieux, O.; Holden, R., Simple mechanism and preference for honesty, Games Econ. Behav., 83, 284-290 (2014) · Zbl 1284.91182
[20] Knuth, D.E.: Marriages stables. Les Presses de l’Universit é de Montréal, Montréal (1976)
[21] Korpela, V., Bayesian implementation with partially honest individuals, Soc. Choice Welf., 43, 647-658 (2014) · Zbl 1306.91065
[22] Lee, J.; Sabourian, H., Efficient repeated implementation, Econometrica, 79, 1967-1994 (2011) · Zbl 1241.91046
[23] Liu, Z., Implementation of maximin rational expectations equilibrium, Econ. Theory, 62, 813-837 (2016) · Zbl 1367.91113
[24] Lombardi, M.; Yoshihara, N., A full characterization of Nash implementation with strategy space reduction, Econ. Theory, 54, 131-151 (2013) · Zbl 1284.91023
[25] Lombardi, M.; Yoshihara, N., Natural implementation with semi-responsible agents in pure exchange economies, Int. J. Game Theory, 46, 1015-1036 (2017) · Zbl 1411.91373
[26] Lombardi, M.; Yoshihara, N., Treading a fine line: (im)possibilities for Nash implementation with partially-honest individuals, Games Econ. Behav., 111, 203-216 (2018) · Zbl 1416.91107
[27] Lombardi, M., Yoshihara, N.: Partially-honest Nash implementation: a full characterization (2019). Available at SSRN: https://ssrn.com/abstract=2232274
[28] Maskin, E., Nash equilibrium and welfare optimality, Rev. Econ. Stud., 66, 23-38 (1999) · Zbl 0956.91034
[29] Maskin, E.; Sjöström, T.; Arrow, K.; Sen, AK; Suzumura, K., Implementation theory, Handbook of Social Choice and Welfare, 237-288 (2002), Amsterdam: Elsevier Science, Amsterdam
[30] Matsushima, H., A new approach to the implementation problem, J. Econ. Theory, 45, 128-144 (1988) · Zbl 0642.90011
[31] Matsushima, H., Behavioral aspects of implementation theory, Econ. Lett., 100, 161-164 (2008) · Zbl 1255.91163
[32] Matsushima, H., Role of honesty in full implementation, J. Econ. Theory, 139, 353-359 (2008) · Zbl 1133.91357
[33] Mezzetti, C., Renou, L.: Repeated Nash implementation (2012). Available at SSRN: http://ssrn.com/abstract=2096184
[34] Miyagawa, E., Subgame-perfect implementation of bargaining solutions, Games Econ. Behav., 41, 292-308 (2002) · Zbl 1037.91008
[35] Moore, J.; Repullo, R., Subgame perfect implementation, Econometrica, 56, 1191-1220 (1988) · Zbl 0657.90005
[36] Moore, J.; Repullo, R., Nash implementation: a full characterization, Econometrica, 58, 1083-1100 (1990) · Zbl 0731.90009
[37] Moulin, H., Implementing the Kalai-Smorodinsky bargaining solution, J. Econ. Theory, 33, 32-45 (1984) · Zbl 0549.90096
[38] Mukherjee, S., Muto, N., Ramaekers, E.: Implementation in undominated strategies with partially honest agents, Core DP 2017/11 (2017) · Zbl 1393.91058
[39] Naeve, J., Nash implementation of the Nash bargaining solution using intuitive message spaces, Econ. Lett., 62, 23-28 (1999) · Zbl 0916.90283
[40] Nash, JF, The bargaining problem, Econometrica, 18, 155-162 (1950) · Zbl 1202.91122
[41] Nash, JF, Two person cooperative games, Econometrica, 21, 128-140 (1953) · Zbl 0050.14102
[42] Ortner, J., Direct implementation with partially honest individuals, Games Econ. Behav., 90, 1-16 (2015) · Zbl 1318.91101
[43] Palfrey, T.; Srivastava, S., Implementation with incomplete information in exchange economies, Econometrica, 57, 115-134 (1989) · Zbl 0669.90017
[44] Palfrey, T.; Srivastava, S., Nash-implementation using undominated strategies, Econometrica, 59, 479-501 (1991) · Zbl 0734.90004
[45] Postlewaite, A.; Schmeidler, D., Implementation in differential information economies, J. Econ. Theory, 39, 14-33 (1986) · Zbl 0597.90010
[46] Roth, AE; Oliveira Sotomayor, MA, Two-Sided Matching (1990), Cambridge: Cambridge University Press, Cambridge
[47] Saijo, T.; Tatamitani, Y.; Yamato, T., Toward natural implementation, Int. Econ. Rev., 37, 949-980 (1996) · Zbl 0867.90008
[48] Saporiti, A., Securely implementable social choice rules with partially honest agents, J. Econ. Theory, 154, 216-228 (2014) · Zbl 1309.91050
[49] Serrano, R., A comment on the Nash program and the theory of implementation, Econ. Lett., 55, 203-208 (1997) · Zbl 0899.90012
[50] Sjöström, T., On the necessary and sufficient conditions for Nash implementation, Soc. Choice Welf., 8, 333-340 (1991) · Zbl 0734.90007
[51] Sjöström, T., Implementation by demand mechanisms, Econ. Des., 1, 343-354 (1996)
[52] Tadenuma, K.; Toda, M., Implementable stable solutions to pure matching problems, Math. Soc. Sci., 35, 121-132 (1998) · Zbl 0929.91038
[53] Vartiainen, H., Subgame perfect implementation: a full characterization, J. Econ. Theory, 133, 111-126 (2007) · Zbl 1280.91061
[54] Vartiainen, H., Nash implementation and bargaining problem, Soc. Choice Welf., 29, 333-351 (2007) · Zbl 1280.91087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.