×

zbMATH — the first resource for mathematics

Constraint programming and operations research. (English) Zbl 1402.90148
Summary: We present an overview of the integration of constraint programming (CP) and operations research (OR) to solve combinatorial optimization problems. We interpret CP and OR as relying on a common primal-dual solution approach that provides the basis for integration using four main strategies. The first strategy tightly interweaves propagation from CP and relaxation from OR in a single solver. The second applies OR techniques to domain filtering in CP. The third decomposes the problem into a portion solved by CP and a portion solved by OR, using CP-based column generation or logic-based Benders decomposition. The fourth uses relaxed decision diagrams developed for CP propagation to help solve dynamic programming models in OR. The paper cites a significant fraction of the literature on CP/OR integration and concludes with future perspectives.

MSC:
90C27 Combinatorial optimization
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Achterberg, T, SCIP: solving constraint integer programs, Mathematical Programming Computation, 1, 1-41, (2008) · Zbl 1171.90476
[2] Achterberg, T., Berthold, T., Koch, T., & Wolter, K. (2008). A new approach to integrate CP and MIP. In Perron, L., & Trick, M.A. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 5015, pp. 6-20. Springer. · Zbl 1142.68504
[3] Aggoun, A; Beldiceanu, N, Extending CHIP in order to solve complex scheduling and placement problems, Mathematical and Computer Modelling, 17, 57-73, (1993)
[4] Ahuja, R.K., Magnanti, T.L., & Orlin, J.B. (1993). Linear Programming and Network Flows, 3rd edn. Upper Saddle River: Prentice-Hall. · Zbl 1201.90001
[5] Akers, SB, Binary decision diagrams, IEEE Transactions on Computers, C-27, 509-516, (1978) · Zbl 0377.94038
[6] Althaus, E., Bockmayr, A., Elf, M., Kasper, T., Jüenger, M., & Mehlhorn, K. (2002). SCIL—Symbolic constraints in integer linear programming. In 10th European symposium on Algorithms (ESA 2002), Lecture Notes in Computer Science, vol. 2461, pp. 75-87. Springer. · Zbl 1019.90515
[7] Andersen, H.R. (1997). An introduction to binary decision diagrams. Lecture notes, available online. Copenhagen: IT University of Copenhagen.
[8] Andersen, H.R. (2007). A constraint store based on multivalued decision diagrams. In Hadžić, T., Hooker, J.N., Tiedemann, P., & Bessiere, C. (Eds.) Principles and Practice of Constraint Programming (CP 2007), Lecture Notes in Computer Science, vol. 4741, pp. 118-132. Springer.
[9] Appa, G; Magos, D; Mourtos, I, A polyhedral approach to the alldifferent system, Mathematical Programming, 124, 1-52, (2010) · Zbl 1257.90055
[10] Appa, G., Mourtos, I., & Magos, D. (2002). Integrating constraint and integer programming for the orthogonal Latin squares problem. In Van Hentenryck, P. (Ed.) Principles and Practice of Constraint Programming (CP 2002), Lecture Notes in Computer Science, vol. 2470, pp. 17-32. Springer.
[11] Aron, I., Hooker, J.N., & Yunes, T.H. (2004). SIMPL: A system for integrating optimization techniques. In Régin, J.C., & Rueher, M. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 3011, pp. 21-36. Springer. · Zbl 1094.68636
[12] Artigues, C; Gendreau, M; Rousseau, LM; Vergnaud, A, Solving an integrated employee timetabling and job-shop scheduling problem via hybrid branch-and-bound, Computers & Operations Research, 36, 2330-2340, (2009) · Zbl 1179.90119
[13] Bacchus, F., Dalmao, S., & Pitassi, T. (2014). Relaxation search: A simple way of managing optional clauses. In AAAI Conference on Artificial Intelligence, pp. 835-841.
[14] Bajestani, MA; Beck, JC, Scheduling a dynamic aircraft repair shop with limited repair resources, Journal of Artificial Intelligence Research, 47, 35-70, (2013) · Zbl 1276.68040
[15] Bajgiran, O., Cire, A., & Rousseau, L.M. (2017). A first look at picking dual variables for maximizing reduced-cost based fixing. In Lombardi, M., & Salvagnin, D. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 10335, pp. 221-228. Springer. · Zbl 06756588
[16] Balas, E; Bockmayr, A; Pisaruk, N; Wolsey, L, On unions and dominants of polytopes, Mathematical Programming, 99, 223-239, (2004) · Zbl 1098.90092
[17] Baptiste, P., & Le Pape, C. (1996). Edge-finding constraint propagation algorithms for disjunctive and cumulative scheduling. In Proceedings of the Fifteenth Workshop of the U.K. Planning Special Interest Group. Liverpool, U.K.
[18] Baptiste, P., Le Pape, C., & Nuijten, W. (2001). Constraint-based scheduling: applying constraint programming to scheduling problems. Dordrecht: Kluwer. · Zbl 1094.90002
[19] Barnhart, C; Johnson, EL; Nemhauser, GL; Savelsbergh, MWP; Vance, PH, Branch-and-price: column generation for solving huge integer programs, Operations Research, 46, 316-329, (1998) · Zbl 0979.90092
[20] Beame, P., Kautz, H., & Sabharwal, A. (2003). Understanding the power of clause learning. In International Joint Conference on Artificial Intelligence (IJCAI 2003). · Zbl 1080.68651
[21] Beaumont, N, An algorithm for disjunctive programs, European Journal of Operational Research, 48, 362-371, (1990) · Zbl 0744.90062
[22] Beck, J.C. (2010). Checking up on branch-and-check. In Cohen, D. (Ed.) Principle and Practice of Constraint Programming (CP), Lecture Notes in Computer Science, vol. 6308, pp. 84-98.
[23] Beldiceanu, N; Contejean, E, Introducing global constraints in CHIP, Mathematical and Computer Modelling, 12, 97-123, (1994) · Zbl 0816.68048
[24] Bellman, R. (1957). Dynamic programming. Princeton: Princeton University Press. · Zbl 0077.13605
[25] Belov, G., Stuckey, P.J., Tack, G., & Wallace, M. (2016). Improved linearization of constraint programming models. In Proceedings of CP, Lecture Notes in Computer Science, vol. 9892, pp. 49-65. Springer.
[26] Benchimol, P; Hoeve, WJ; Régin, JC; Rousseau, LM; Rueher, M, Improved filtering for weighted circuit constraints, Constraints, 17, 205-233, (2012) · Zbl 1309.90115
[27] Benders, JF, Partitioning procedures for solving mixed-variables programming problems, Numerische Mathematik, 4, 238-252, (1962) · Zbl 0109.38302
[28] Benini, L., Bertozzi, D., Guerri, A., & Milano, M. (2005). Allocation and scheduling for MPSoCs via decomposition and no-good generation. In Principles and Practice of Constraint Programming (CP 2005), Lecture Notes in Computer Science, vol. 3709, pp. 107-121. Springer. · Zbl 1153.68448
[29] Benini, L., Lombardi, M., Mantovani, M., Milano, M., & Ruggiero, M. (2008). Multi-stage Benders decomposition for optimizing multicore architectures. In Perron, L., & Trick, M.A. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 5015, pp. 36-50. Springer. · Zbl 1142.68506
[30] Benoist, T., Laburthe, F., & Rottembourg, B. (2001). Lagrange relaxation and constraint programming collaborative schemes for traveling tournament problems. In Gervet, C., & Wallace, M. (Eds.) CPAIOR Proceedings. Ashford, U.K.
[31] Bergman, D., & Cire, A.A. Discrete Nonlinear Optimization by State-Space Decompositions. Management Science (to appear). · Zbl 1368.90105
[32] Bergman, D; Cire, AA; Hoeve, WJ, MDD propagation for sequence constraints, JAIR, 50, 697-722, (2014) · Zbl 1366.68072
[33] Bergman, D., Cire, A.A., & van Hoeve, W.J. (2015). Improved Constraint Propagation via Lagrangian Decomposition. In Proceedings of CP, Lecture Notes in Computer Science, vol. 9255, pp. 30-38. Springer.
[34] Bergman, D; Cire, AA; Hoeve, WJ, Lagrangian bounds from decision diagrams, Constraints, 20, 346-361, (2015) · Zbl 1327.90116
[35] Bergman, D., Cire, A.A., van Hoeve, W.J., & Hooker, J.N. (2016). Decision Diagrams for Optimization. Berlin: Springer. · Zbl 06653190
[36] Bergman, D; Ciré, AA; Hoeve, WJ, Lagrangian bounds from binary decision diagrams, Constraints, 20, 346-361, (2015) · Zbl 1327.90116
[37] Bergman, D; Ciré, AA; Hoeve, WJ; Hooker, JN, Optimization bounds from binary decision diagrams, INFORMS Journal on Computing, 26, 253-268, (2013) · Zbl 1356.90083
[38] Bergman, D; Ciré, AA; Hoeve, WJ; Hooker, JN, Discrete optimization with binary decision diagrams, INFORMS Journal on Computing, 28, 47-66, (2016) · Zbl 1338.90260
[39] Bergman, D., Ciré, A.A., van Hoeve, W.J., & Hooker, J.N. (2017). Decision Diagrams for Optimization. Berlin: Springer. · Zbl 06653190
[40] Bergman, D., & Hooker, J.N. (2012). Graph coloring facets from all-different systems. In Jussien, N., & Petit, T. (Eds.) CPAIOR Proceedings, pp. 50-65. Springer.
[41] Bergman, D; Hooker, JN, Graph coloring inequalities for all-different systems, Constraints, 19, 404-433, (2014) · Zbl 1316.90056
[42] Bergman, D., van Hoeve, W.J., & Hooker, J.N. (2011). Manipulating MDD relaxations for combinatorial optimization. In Achterberg, T., & Beck, J.C. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 6697, pp. 20-35. Springer. · Zbl 1302.90166
[43] Bockmayr, A; Kasper, T, Branch-and-infer: A unifying framework for integer and finite domain constraint programming, INFORMS Journal on Computing, 10, 287-300, (1998) · Zbl 1034.90517
[44] Bockmayr, A., & Pisaruk, N. (2003). Detecting infeasibility and generating cuts for mixed integer programming using constraint progrmaming. In Gendreau, M., Pesant, G., & Rousseau, L.M. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 1234. Springer. · Zbl 1086.90041
[45] Bockmayr, A., Pisaruk, N., & Aggoun, A. (2001). Network flow problems in constraint programming. In Walsh, T. (Ed.) Principles and Practice of Constraint Programming (CP 2001), Lecture Notes in Computer Science, vol. 2239, pp. 196-210. Springer. · Zbl 1067.68618
[46] Bollapragada, S; Ghattas, O; Hooker, JN, Optimal design of truss structures by mixed logical and linear programming, Operations Research, 49, 42-51, (2001) · Zbl 1163.90827
[47] Borzabadi, A.H., & Sadjadi, M.E. (2009). Optimal control of hybrid systems by logic-based Benders decomposition. In Giua, A., Mahulea, C., Silva, M., & Zaytoon, J. (Eds.) Analysis and Design of Hybrid Systems, vol. 3, pp. 104-107.
[48] Branch, S., Narodytska, N., Quimper, C.G., Stuckey, P., & Walsh, T. (2007). Encodings of the sequence constraint. In Bessiere, C. (Ed.) Principles and Practice of Constraint Programming (CP 2007), Lecture Notes in Computer Science, vol. 4741, pp. 210-224. Springer. · Zbl 1145.68507
[49] Brown, R.G., Chinneck, J.W., & Karam, G.M. (1989). Optimization with constraint programming systems. In R.S. et al. (Ed.) Impact of Recent Computer Advances on Operations Research, Publications in Operations Research Series, vol. 9, pp. 463-473. Elsevier, Williamsburg, VA.
[50] Brucker, P; Thiele, O, A branch and bound method for the general-shop problem with sequence-dependent setup times, OR Spektrum, 18, 145-161, (1996) · Zbl 0852.90087
[51] Bryant, RE, Graph-based algorithms for Boolean function manipulation, IEEE Transactions on Computers, C-35, 677-691, (1986) · Zbl 0593.94022
[52] Cambazard, H; Fages, JG, New filtering for atmostnvalue and its weighted variant: A Lagrangian approach, Constraints, 20, 362-380, (2015) · Zbl 1327.90130
[53] Cambazard, H., Hladik, P.E., Déplanche, A.M., Jussien, N., & Trinquet, Y. (2004). Decomposition and learning for a hard real time task allocation problem. In Wallace, M. (Ed.) Principles and Practice of Constraint Programming (CP 2004), Lecture Notes in Computer Science, vol. 3258, pp. 153-167. Springer. · Zbl 1152.68545
[54] Cambazard, H., & Jussien, N. (2005). Identifying and exploiting problem structures using explanation-based costraint programming. In Barták, R., & Milano, M. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 3524, pp. 94-109. Springer. · Zbl 1133.90381
[55] Cambazard, H., O’Mahony, E., & O’Sullivan, B. (2010). Hybrid methods for the multileaf collimator sequencing problem. In Lodi, A., Milano, M., & Toth, P. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 6140, pp. 56-70. Springer. · Zbl 1285.68152
[56] Cambazard, H., & Penz, B. (2012). A Constraint Programming Approach for the Traveling Purchaser Problem. In Proceedings of CP, Lecture Notes in Computer Science, vol. 7514, pp. 735-749. Springer.
[57] Capone, A; Carello, G; Filippini, I; Gualandi, S; Malucelli, F, Solving a resource allocation problem in wireless mesh networks: A comparison between a cp-based and a classical column generation, Networks, 55, 221-233, (2010) · Zbl 1200.90038
[58] Carlier, J, One machine problem, European Journal of Operational Research, 11, 42-47, (1982) · Zbl 0482.90045
[59] Carlier, J; Pinson, E, An algorithm for solving the job-shop problem, Management Science, 35, 164-176, (1989) · Zbl 0677.90036
[60] Carlier, J; Pinson, E, A practical use of jackson’s preemptive schedule for solving the job shop problem, Annals of Operations Research, 26, 269-287, (1990) · Zbl 0709.90061
[61] Carlier, J; Pinson, E, Adjustment of heads and tails for the job-shop problem, European Journal of Operational Research, 78, 146-161, (1994) · Zbl 0812.90063
[62] Caseau, Y., & Laburthe, F. (1994). Improved CLP scheduling with task intervals. In Proceedings of the Eleventh International Conference on Logic Programming (ICLP 1994), pp. 369-383. MIT Press.
[63] Caseau, Y., & Laburthe, F. (1997). Solving small TSPs with constraints. In Naish, L. (Ed.) Proceedings, Fourteenth International Conference on Logic Programming (ICLP 1997), vol. 2833, pp. 316-330. The MIT Press.
[64] Castro, P.M., & Grossmann, I.E. (2006). An efficient MILP model for the short-term scheduling of single stage batch plants. technical report, Departamento de Modelacão e Simulacão de Processos, INETI, Lisbon.
[65] Çoban, E; Hooker, JN, Single-facility scheduling by logic-based benders decomposition, Annals of Operations Research, 210, 245-272, (2013) · Zbl 1284.90023
[66] Chabrier, A. (2000). A cooperative CP and LP optimizer approach for the pairing generation problem. In CPAIOR Proceedings. Ferrara, Italy.
[67] Chabrier, A. (2003). Heuristic branch-and-price-and-cut to solve a network design problem. In Gendreau, M., Pesant, G., & Rousseau, L.M. (Eds.) CPAIOR Proceedings. Montréal.
[68] Christofides, N; Mingozzi, A; Toth, P, State-space relaxation procedures for the computation of bounds to routing problems, Networks, 11, 145-164, (1981) · Zbl 0458.90071
[69] Chu, G., Gange, G., & Stuckey, P.J. (2016). Lagrangian Decomposition via Sub-problem Search. In Proceedings of CPAIOR, Lecture Notes in Computer Science, vol. 9676, pp. 65-80. Springer. · Zbl 06598657
[70] Chu, Y., & Xia, Q. (2005). A hybrid algorithm for a class of resource-constrained scheduling problems. In Barták, R., & Milano, M. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 3524, pp. 110-124. Springer. · Zbl 1133.90335
[71] Chvátal, V. (1983). Linear Programming. W. H. New York: Freeman. · Zbl 0537.90067
[72] Ciré, A.A., Çoban, E., & Hooker, J.N. (2013). Mixed integer programming vs logic-based Benders decomposition for planning and scheduling. In Gomes, C., & Sellmann, M. (Eds.) CPAIOR Proceedings, pp. 325-331. · Zbl 1382.90061
[73] Corréa, A.I., Langevin, A., & Rousseau, L.M. (2004). Dispatching and conflict-free routing of automated guided vehicles: A hybrid approach combining constraint programming and mixed integer programming. In Régin, J.C., & Rueher, M. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 3011, pp. 370-378. Springer. · Zbl 1094.90519
[74] Cortés, CE; Gendreau, M; Rousseau, LM; Souyris, S; Weintraub, A, Branch-and-price and constraint programming for solving a real-life Technician dispatching problem, European Journal of Operational Research, 238, 300-312, (2014) · Zbl 1338.90048
[75] Costa, MC, Persistency in maximum cardinality bipartite matchings, Operations Research Letters, 15, 143-149, (1994) · Zbl 0810.90126
[76] Côté, JF; Dell’Amico, M; Iori, M, Combinatorial benders cuts for the strip packing problem, Operations Research, 62, 643-661, (2014) · Zbl 1302.90173
[77] Cronholm, W., & Ajili, F. (2004). Strong cost-based filtering for Lagrange decomposition applied to network design. In Wallace, M. (Ed.) Principles and Practice of Constraint Programming (CP 2004), Lecture Notes in Computer Science, vol. 3258, pp. 726-730. Springer. · Zbl 1152.90354
[78] Davies, T.O., Gange, G., & Stuckey, P.J. (2017). Automatic logic-based Benders decomposition with mini-zinc. In 31st AAAI Conference on Artificial Intelligence (AAAI 2017), pp. 787-793.
[79] Davies, T.O., Pearce, A.R., Stuckey, P.J., & Lipovetzky, N. (2015). Sequencing operator counts. In International Conference on Automated Planning and Scheduling (ICAPS), pp. 61-69.
[80] Delorme, M; Iori, M; Martello, S, Logic based benders’ decomposition for orthogonal stock cutting problems=, Computers and Operations Research, 78, 290-298, (2017) · Zbl 1391.90514
[81] Demassey, S., Artiques, C., & Michelon, P. (2002). A hybrid constraint propagation-cutting plane prtocedure for the RCPSP. In Jussien, N., & Laburthe, F. (Eds.) Proceedings of the International Workshop on Integration of Artificial Intelligence and Operations Research Techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR 2002). Le Croisic, France.
[82] Demassey, S., Pesant, G., & Rousseau, L.M. (2005). Constraint-programming based column generation for employee timetabling. In Barták, R., & Milano, M. (Eds.) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR 2005), Lecture Notes in Computer Science, vol. 3524, pp. 140-154. Springer. · Zbl 1133.90359
[83] Demassey, S; Pesant, G; Rousseau, LM, A cost-regular based hybrid column generation approach, Constraints, 11, 315-333, (2006) · Zbl 1117.90066
[84] Dorndorf, U; Pesch, E; Phan-Huy, T, Solving the open shop scheduling problem, Journal of Scheduling, 4, 157-174, (2001) · Zbl 0991.90068
[85] Doulabi, S.H.H., Rousseau, L.M., & Pesant, G. (2014). A Constraint Programming-Based Column Generation Approach for Operating Room Planning and Scheduling. In Proceedings of CPAIOR, Lecture Notes in Computer Science, vol. 8451, pp. 455-463. Springer. · Zbl 06298810
[86] Doulabi, SHH; Rousseau, LM; Pesant, G, A constraint-programming-based branch-and-price-and-cut approach for operating room planning and scheduling, INFORMS Journal on Computing, 28, 432-448, (2016) · Zbl 1348.90271
[87] Downing, N., Feydy, T., & Stuckey, P.J. (2012). Explaining Flow-Based Propagation. In Proceedings of CPAIOR, Lecture Notes in Computer Science, vol. 7298, pp. 146-162. Springer.
[88] Easton, K., Nemhauser, G., & Trick, M. (2001). The traveling tournament problem description and benchmarks. In Walsh, T. (Ed.) Principles and Practice of Constraint Programming (CP 2001), Lecture Notes in Computer Science, vol. 2239, pp. 580-584. Springer. · Zbl 1067.68627
[89] Easton, K., Nemhauser, G., & Trick, M. (2002). Solving the traveling tournament problem: A combined integer programming and constraint programming approach. In Proceedings of the International Conference on the Practice and Theory of Automated Timetabling (PATAT 2002).
[90] Edis, E.B., & Oguz, C. (2011). Parallel Machine Scheduling with Additional Resources: A Lagrangian-Based Constraint Programming Approach. In Proceedings of CPAIOR, Lecture Notes in Computer Science, vol. 6697, pp. 92-98. Springer. · Zbl 1302.90078
[91] Emeretlis, A., Theodoridis, G., Alefragis, P., & Voros, N. (2015). Mapping DAGs on heterogeneous platforms using logic-based Benders decompostion. In IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 119-124. IEEE.
[92] Erschler, J; Lopez, P; Esquirol, P, Ordonnancement de tâches sous contraintes: une approche énergétique. RAIRO automatique, productique, Informatique Industrielle, 26, 453-481, (1992) · Zbl 0774.90046
[93] Erschler, J; Lopez, P; Thuriot, C, Raisonnement temporel sous contraintes de ressource et problèmes d’ordonnancement, Revue d’Intelligence Artificielle, 5, 7-32, (1991)
[94] Fahle, T; Junker, U; Karish, SE; Kohn, N; Sellmann, M; Vaaben, B, Constraint programming based column generation for crew assignment, Journal of Heuristics, 8, 59-81, (2002) · Zbl 1073.90542
[95] Fazel-Zarandi, MM, Using logic-based benders decomposition to solve the capacity- and distance-constrained plant location problem, INFORMS Journal on Computing, 24, 387-398, (2012) · Zbl 06599277
[96] Fazel-Zarandi, M.M., & Beck, J.C. (2009). Solving a location-allocation problem with logic-based Benders decomposition. In Gent, I.P. (Ed.) Principles and Practice of Constraint Programming (CP 2009), Lecture Notes in Computer Science, vol. 5732, pp. 344-351. New York: Springer.
[97] Focacci, F., Lodi, A., & Milano, M. (1999). Cost-based domain filtering. In Jaffar, J. (Ed.) Principles and Practice of Constraint Programming (CP 1999), Lecture Notes in Computer Science, vol. 1713, pp. 189-203. Springer.
[98] Focacci, F., Lodi, A., & Milano, M. (1999). Solving TSP with time windows with constraints. In International Conference on Logic Programming (ICLP 1999), pp. 515-529. MIT Press.
[99] Focacci, F., Lodi, A., & Milano, M. (2000). Cutting planes in constraint programming: An hybrid approach. In Dechter, R. (Ed.) Principles and Practice of Constraint Programming (CP 2000), Lecture Notes in Computer Science, vol. 1894, pp. 187-201. Springer. · Zbl 1044.68758
[100] Focacci, F; Lodi, A; Milano, M, A hybrid exact algorithm for the TSPTW, INFORMS Journal on Computing, 14, 403-417, (2002) · Zbl 1238.90054
[101] Focacci, F; Lodi, A; Milano, M, Embedding relaxations in global constraints for solving TSP and TSPTW, Annals of Mathematics and Artificial Intelligence, 34, 291-311, (2002) · Zbl 1002.68159
[102] Focacci, F; Lodi, A; Milano, M, Optimization-oriented global constraints, Constraints, 7, 351-365, (2002) · Zbl 1028.68024
[103] Focacci, F., & Nuijten, W.P.M. (2000). A constraint propagation algorithm for scheduling with sequence dependent setup times. In Junker, U., Karisch, S.E., & Tschöke, S. (Eds.) Proceedings of the International Workshop on Integration of Artificial Intelligence and Operations Research Techniques in Constraint Programming for Combintaorial Optimization Problems (CPAIOR 2000) (pp. 53-55). Germany: Paderborn.
[104] Fontaine, D., Michel, L.D., & Hentenryck, P.V. (2014). Constraint-Based Lagrangian Relaxation. In Proceedings of CP, Lecture Notes in Computer Science, vol. 8656, pp. 324-339. Springer.
[105] Gabteni, S., & Grönkvist, M. (2006). A Hybrid Column Generation and Constraint Programming Optimizer for the Tail Assignment Problem. In Proceedings of CPAIOR, Lecture Notes in Computer Science, vol. 3990, pp. 89-103. Springer. · Zbl 1177.90342
[106] Gabteni, S; Grönkvist, M, Combining column generation and constraint programming to solve the tail assignment problem, Annals of Operations Research, 171, 61-76, (2009) · Zbl 1179.90207
[107] Garfinkel, R; Nemhauser, GL, Optimal political districting by implicit enumeration techniques, Management Science, 16, b495—b508, (1970) · Zbl 0195.22103
[108] Gaudin, E., Jussien, N., & Rochart, G. (2004). Implementing explained global constraints. In Proceedings of the CP’04 Workshop on Constraint Propagation and Implementation, pp. 61-76.
[109] Gellermann, T., Sellmann, M., & Wright, R. (2005). Shorter-path constraints for the resource constrained shortest path problem. In Barták, R., & Milano, M. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 3524, pp. 201-216. Springer. · Zbl 1133.90404
[110] Gendron, B., Lebbah, H., & Pesant, G. (2005). Improving the cooperation between the master problem and the subproblem in constraint programming based column generation. In Barták, R., & Milano, M. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 3524, pp. 217-227. Springer. · Zbl 1133.68429
[111] German, G., Briant, O., Cambazard, H., & Jost, V. (2017). Arc consistency via linear programming. In Proceedings of CP, LNCS, vol. 10416, pp. 114-128. Springer.
[112] Glover, F, Maximum matching in a convex bipartite graph, Naval Research Logistics Quarterly, 316, 313-316, (1967) · Zbl 0183.24501
[113] Gomes, C.P., & Sellmann, M. (Eds.). (2013). Decision diagrams and dynamic programming, Lecture Notes in Computer Science, Vol. 7874. Berlin: Springer.
[114] Gong, J., Lee, E.E., Mitchell, J.E., & Wallace, W.A. (2009). Logic-based multiobjective optimization for restoration planning. In Chaovalitwongse, W., Furman, K.C., & Pardalos, P.M. (Eds.) Optimization and Logistics Challenges in the Enterprise, pp. 305-324. Springer. · Zbl 1172.90483
[115] Grönkvist, M. (2004). A constraint programming model for tail assignment. In Régin, J.C., & Rueher, M. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 3011, pp. 142-156. Springer. · Zbl 1094.68644
[116] Grönkvist, M, Accelerating column generation for aircraft scheduling using constraint propagation, Computers & Operations Research, 33, 2918-2934, (2006) · Zbl 1086.90023
[117] Grossmann, IE; Hooker, JN; Raman, R; Yan, H, Logic cuts for processing networks with fixed charges, Computers and Operations Research, 21, 265-279, (1994) · Zbl 0789.90057
[118] Gu, H., Schutt, A., & Stuckey, P.J. (2013). A Lagrangian Relaxation Based Forward-Backward Improvement Heuristic for Maximising the Net Present Value of Resource-Constrained Projects. In Proceedings of CPAIOR, Lecture Notes in Computer Science, vol. 7874, pp. 340-346. Springer. · Zbl 1382.90120
[119] Gualandi, M. (2009). \(k\)-clustering minimum biclique completion via a hybrid CP and SDP approach. In van Hoeve, W.J., & Hooker, J.N. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 5547 (pp. 87-101). New York: Springer. · Zbl 1241.68101
[120] Gualandi, S; Malucelli, F, Exact solution of graph coloring problems via constraint programming and column generation, INFORMS Journal on Computing, 24, 81-100, (2012) · Zbl 06599257
[121] Gualandi, S., & Malucelli, F. (2012). Resource Constrained Shortest Paths with a Super Additive Objective Function. In Proceedings of CP, Lecture Notes in Computer Science, vol. 7514, pp. 299-315. Springer.
[122] Guignard, M; Kim, S, Lagrangian decomposition: A model yielding stronger Lagrangian bounds, Mathematical Programming, 39, 215-228, (1987) · Zbl 0638.90074
[123] Ha, M.H., Quimper, C.G., & Rousseau, L.M. (2015). General Bounding Mechanism for Constraint Programs. In Proceedings of CP, Lecture Notes in Computer Science, vol. 9255, pp. 158-172. Springer.
[124] Hadžić, T., & Hooker, J.N. (2006). Discrete global optimization with binary decision diagrams. In Workshop on Global Optimization: Integrating Convexity, Optimization, Logic Programming, and Computational Algebraic Geometry (GICOLAG). Vienna.
[125] Hadžić, T., & Hooker, J.N. (2006). Postoptimality analysis for integer programming using binary decision diagrams, presented at GICOLAG workshop (Global Optimization: Integrating Convexity, Optimization, Logic Programming, and Computational Algebraic Geometry), Vienna, Tech. rep., Carnegie Mellon University.
[126] Hadžić, T., & Hooker, J.N. (2007). Cost-bounded binary decision diagrams for 0-1 programming. In van Hentemryck, P., & Wolsey, L. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 4510, pp. 332-345. Springer.
[127] Hadžić, T., Hooker, J.N., & Tiedemann, P. (2008). Propagating separable inequalities in an MD store. In Perron, L., & Trick, M.A. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 5015, pp. 318-322. Springer.
[128] Hamdi, I., & Loukil, T. (2013). Logic-based Benders decomposition to solve the permutation flowshop scheduling problem with time lags. In International Conference on Modeling, Simulation and Applied Optimization (ICMSAO), pp. 1-7. IEEE.
[129] Harjunkoski, I; Grossmann, IE, Decomposition techniques for multistage scheduling problems using mixed-integer and constraint programming methods, Computers and Chemical Engineering, 26, 1533-1552, (2002)
[130] Heching, A., & Hooker, J.N. (2016). Scheduling home hospice care with logic-based Benders decomposition. In Quimper, C.G. (Ed.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 9676, pp. 187-197. Springer. · Zbl 06598665
[131] Hellsten, L., Pesant, G., & van Beek, P. (2004). A domain consistency algorithm for the stretch constraint. In Wallace, M. (Ed.) Principles and Practice of Constraint Programming (CP 2004), Lecture Notes in Computer Science, vol. 3258, pp. 290-304. Springer. · Zbl 1152.68557
[132] Herbrard, E., O’Mahony, E., & O’Sullivan, B. (2010). A constraint integer programming approach for resource-constrained project scheduling. In Lodi, A., Milano, M., & Toth, P. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 6140, pp. 313-317. Springer.
[133] Hladik, PE; Cambazard, H; Déplanche, AM; Jussien, N, Solving a real-time allocation problem with constraint programming, Journal of Systems and Software, 81, 132-149, (2008)
[134] Hoda, S., van Hoeve, W.J., & Hooker, J.N. (2010). A systematic approach to MDD-based constraint programming. In Proceedings of the 16th International Conference on Principles and Practices of Constraint Programming, Lecture Notes in Computer Science. Springer.
[135] van Hoeve, W.J. (2011). Over-Constrained Problems. In Hentenryck, P.V., & Milano, M. (Eds.) Hybrid Optimization: The Ten Years of CPAIOR, pp. 191-225. Springer. · Zbl 1206.90184
[136] van Hoeve, W.J., Gomes, C.P., Selman, B., & Lombardi, M. (2007). Optimal Multi-Agent Scheduling with Constraint Programming. In Proceedings of AAAI, pp. 1813-1818. AAAI Press.
[137] Hoeve, WJ; Pesant, G; Rousseau, LM, On global warming: flow-based soft global constraints, Journal of Heuristics, 12, 347-373, (2006) · Zbl 1100.68623
[138] Hoeve, WJ; Pesant, G; Rousseau, LM; Sabharwal, A, New filtering algorithms for combinations of among constraints, Constraints, 14, 273-292, (2009) · Zbl 1186.68552
[139] Hooker, J.N. (1994). Logic-based methods for optimization. In Borning, A. (Ed.) Principles and Practice of Constraint Programming (CP 2002), Lecture Notes in Computer Science, vol. 874, pp. 336-349. Springer.
[140] Hooker, J.N. (1995). Logic-based Benders decomposition. In INFORMS National Meeting (INFORMS 1995). · Zbl 1023.90082
[141] Hooker, J.N. (2000). Logic-based methods for optimization: combining optimization and constraint satisfaction. New York: Wiley. · Zbl 0974.90001
[142] Hooker, JN, Logic, optimization and constraint programming, INFORMS Journal on Computing, 14, 295-321, (2002) · Zbl 1238.90002
[143] Hooker, J.N. (2003). A framework for integrating solution methods. In Bhargava, H.K., & Ye, M. (Eds.) Computational Modeling and Problem Solving in the Networked World (Proceedings of ICS2003), pp. 3-30. Kluwer.
[144] Hooker, JN, A hybrid method for planning and scheduling, Constraints, 10, 385-401, (2005) · Zbl 1122.90054
[145] Hooker, J.N. (2005). Planning and scheduling to minimize tardiness. In Principles and Practice of Constraint Programming (CP 2005), Lecture Notes in Computer Science, vol. 3709, pp. 314-327. Springer. · Zbl 1153.90423
[146] Hooker, JN, An integrated method for planning and scheduling to minimize tardiness, Constraints, 11, 139-157, (2006) · Zbl 1103.68811
[147] Hooker, J.N. (2007). Integrated Methods for Optimization. Berlin: Springer. · Zbl 1122.90002
[148] Hooker, JN, Planning and scheduling by logic-based benders decomposition, Operations Research, 55, 588-602, (2007) · Zbl 1167.90512
[149] Hooker, J.N. (2012). Integrated Methods for Optimization, 2nd ed. Berlin: Springer. · Zbl 1263.90002
[150] Hooker, JN, Projection, consistency, and george Boole, Constraints, 21, 59-76, (2016) · Zbl 1396.03041
[151] Hooker, J.N. (2016). Projection, inference and consistency. In IJCAI 2016 Proceedings, pp. 4175-4179.
[152] Hooker, JN; Osorio, MA, Mixed logical/linear programming, Discrete Applied Mathematics, 96-97, 395-442, (1999) · Zbl 0945.90031
[153] Hooker, JN; Ottosson, G, Logic-based benders decomposition, Mathematical Programming, 96, 33-60, (2003) · Zbl 1023.90082
[154] Hooker, JN; Ottosson, G; Thorsteinsson, ES; Kim, HJ, A scheme for unifying optimization and constraint satisfaction methods, Knowledge Engineering Review, 15, 11-30, (2000)
[155] Hopcroft, JE; Karp, RM, A n5/2 algorithm for maximum matchings in bipartite graphs, SIAM Journal on Computing, 2, 225-231, (1973) · Zbl 0266.05114
[156] Jain, V; Grossmann, IE, Algorithms for hybrid MILP/CP models for a class of optimization problems, INFORMS Journal on Computing, 13, 258-276, (2001) · Zbl 1238.90106
[157] Junker, U., Karish, S.E., Kohl, N., Vaaben, B., Fahle, T., & Sellmann, M. (1999). A framework for constraint programming based column generation. In Jaffar, J. (Ed.) Principles and Practice of Constraint Programming (CP 1999), Lecture Notes in Computer Science, vol. 1713, pp. 261-275. Springer. · Zbl 0983.90059
[158] Jussien, N. (2003). The versatility of using explanations within constraint programming. Research report. France: École des Mines de Nantes.
[159] Jussien, N., & Barichard, V. (2000). The PaLM system: Explanation-based constraint programming. In Proceedings of TRICS: Techniques foR Implementing Constraint programming Systems, a post-conference workshop of CP 2000, pp. 118-133.
[160] Jussien, N., & Ouis, S. (2001). User-friendly explanations for constraint programming. In Eleventh Workshop on Logic Programming environments (WLPE 2001). Cyprus: Paphos.
[161] Katriel, I., & Thiel, S. (2003). Fast bound consistency for the global cardinality constraint. In Rossi, F. (Ed.) Principles and Practice of Constraint Programming (CP 2003), Lecture Notes in Computer Science, vol. 2833, pp. 437-451. Springer. · Zbl 1273.68400
[162] Khemmoudj, M.O., Bennaceur, H., & Nagih, A. (2005). Combining arc consistency and dual Lagrangean relaxation for filtering CSPs. In Barták, R., & Milano, M. (Eds.) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR 2005), Lecture Notes in Computer Science, vol. 3524, pp. 258-272. Springer. · Zbl 1133.90405
[163] Kim, HJ; Hooker, JN, Solving fixed-charge network flow problems with a hybrid optimization and constraint programming approach, Annals of Operations Research, 115, 95-124, (2002) · Zbl 1013.90010
[164] Kinable, J; Cire, AA; Hoeve, WJ, Hybrid optimization methods for time-dependent sequencing problems, European Journal of Operational Research, 259, 887-897, (2017) · Zbl 1402.90053
[165] Kinable, J., & Trick, M. (2014). A logic-based Benders approach to the concrete delivery problem. In Simonis, H. (Ed.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 8451, pp. 176-192. Springer. · Zbl 06298791
[166] Kohl, N. (2000). Application of or and cp techniques in a real world crew scheduling system. In Proceedings of the International Workshop on Integration of Artificial Intelligence and Operations Research Techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR 2000). Germany: Paderborn.
[167] Laborie, P; Rogerie, J, Temporal linear relaxation in IBM ILOG CP optimizer, J. Scheduling, 19, 391-400, (2016) · Zbl 1347.90044
[168] Lauriėre, JL, A language and a program for stating and solving combinatorial problems, Artificial Intelligence, 10, 29-127, (1978) · Zbl 0374.68060
[169] Lam, E; Hentenryck, P, A branch-and-price-and-check model for the vehicle routing problem with location congestion, Constraints, 21, 394-412, (2016) · Zbl 1368.90115
[170] Lam, E., & Van Hentenryck, P. (2017). Branch-and-check with explanations for the vehicle routing problem with time windows. In J. C. Beck (Ed.) Proceedings of the 23rd International Conference on Principles and Practice of Constraint Programming CP 2017, August 28 - September 1. Melbourne, VIC, Australia (pp. 579-595).
[171] Lee, J., & Leung, K. (2009). Towards Efficient Consistency Enforcement for Global Constraints in Weighted Constraint Satisfaction. In Proceedings of IJCAI, pp. 559-565.
[172] Little, J., & Darby-Dowman, K. (1995). The significance of constraint logic programming to operational research. In Lawrence, M., & Wilsden, C. (Eds.) Operational Research Tutorial Papers (Invited tutorial paper to the Operational Research Society Conference, 1995), pp. 20-45.
[173] Liu, W., Yuan, M., He, X., Gu, Z., & Liu, X. (2008). Efficient SAT-based mapping and scheduling of homogeneous synchronous dataflow graphs for throughput optimization. In Real-Time Systems Symposium, pp. 492-504. IEEE.
[174] Lombardi, M., & Gualandi, S. (2013). A New Propagator for Two-Layer Neural Networks in Empirical Model Learning. In Proceedings of CP, Lecture Notes in Computer Science, vol. 8124, pp. 448-463. Springer.
[175] Lombardi, M; Gualandi, S, A Lagrangian propagator for artificial neural networks in constraint programming, Constraints, 21, 435-462, (2016) · Zbl 1368.90148
[176] Lombardi, M; Milano, M; Ruggiero, M; Benini, L, Stochastic allocation and scheduling for conditional task graphs in multi-processor systems-on-chip, Journal of Scheduling, 13, 315-345, (2010) · Zbl 1232.68017
[177] Lovász, L., & Plummer, M. (1986). Matching Theory, Vol. 29. North-Holland: Annals of discrete Mathematics. · Zbl 0618.05001
[178] Maher, M.J. (2009). SOGgy Constraints: Soft Open Global Constraints. In Proceedings of CP, Lecture Notes in Computer Science, vol. 5732, pp. 584-591. Springer.
[179] Maher, M.J., Narodytska, N., Quimper, C.G., & Walsh, T. (2008). Flow-based propagators for the SEQUENCE and related global constraints. In Stuckey, P.J. (Ed.) Principles and Practice of Constraint Programming (CP 2008), Lecture Notes in Computer Science, vol. 5202, pp. 159-174. Springer.
[180] Maravelias, C.T., & Grossmann, I.E. (2004). Using MILP and CP for the scheduling of batch chemical processes. In Régin, J.C., & Rueher, M. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 3011, pp. 1-20. Springer. · Zbl 1094.90559
[181] Mehlhorn, K., & Thiel, S. (2000). Faster algorithms for bound-consistency of the sortedness and the alldifferent constraint. In Dechter, R. (Ed.) Principles and Practice of Constraint Programming (CP 2000), Lecture Notes in Computer Science, vol. 1894, pp. 306-319. Springer. · Zbl 1044.68783
[182] Menana, J., & Demassey, S. (2009). Sequencing and Counting with the multicost-regular Constraint. In Proceedings of CPAIOR, Lecture Notes in Computer Science, vol. 5547, pp. 178-192. Springer. · Zbl 1241.68104
[183] Métivier, J.P., Boizumault, P., & Loudni, S. (2007). Σ-AllDifferent: Softening AllDifferent in Weighted CSPs. In Proceedings of the 19th IEEE International Conference on Tools with Artificial Intelligence (ICTAI), pp. 223-230. IEEE.
[184] Métivier, J.P., Boizumault, P., & Loudni, S. (2009). Softening Gcc and Regular with preferences. In Proceedings of the 2009 ACM symposium on Applied Computing (SAC), pp. 1392-1396. ACM.
[185] Métivier, J.P., Boizumault, P., & Loudni, S. (2009). Solving Nurse Rostering Problems Using Soft Global Constraints. In Proceedings of CP, Lecture Notes in Computer Science, vol. 5732, pp. 73-87. Springer.
[186] Milano, M., & van Hoeve, W.J. (2002). Reduced cost-based ranking for generating promising subproblems. In Van Hentenryck, P. (Ed.) Principles and Practice of Constraint Programming (CP 2002), Lecture Notes in Computer Science, vol. 2470, pp. 1-16. Springer.
[187] Mingozzi, A. (2002). State space relaxation and search strategies in dynamic programming. In Proceedings of Abstraction, Reformulation, and Approximation, Lecture Notes in Computer Science, vol. 2371, pp. 51-51. Springer. · Zbl 1077.90553
[188] Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., & Tack, G. (2007). Minizinc: Towards a standard CP modelling language. In Bessiere, C. (Ed.) Principles and Practice of Constraint Programming (CP 2007), Lecture Notes in Computer Science, vol. 4741, pp. 529-543. Springer.
[189] Nightingale, P; Akgün, Ȯ; Gent, IP; Jefferson, C; Miguel, I; Spracklen, P, Automatically improving constraint models in savile row, Artificial Intelligence, 251, 35-61, (2017) · Zbl 1419.68099
[190] Nuijten, W.P.M. (1994). Time and resource constrained scheduling. Ph.D. thesis. Eindhoven: Eindhoven University of Technology. · Zbl 0837.90068
[191] Nuijten, W.P.M., & Aarts, E.H.L. (1994). Constraint satisfaction for multiple capacitated job shop scheduling. In Cohn, A. (Ed.) Proceedings of the 11th European Conference on Artificial Intelligence (ECAI 1994), pp. 635-639. Wiley.
[192] Nuijten, WPM; Aarts, EHL, A computational study of constraint satisfaction for multiple capacitated job shop scheduling, European Journal of Operational Research, 90, 269-284, (1996) · Zbl 0916.90152
[193] Nuijten, W.P.M., Aarts, E.H.L., van Erp Taalman Kip, D.A.A., & van Hee, K.M. (1993). Randomized constraint satisfaction for job-shop scheduling. In AAAI-SIGMAN Workshop on Knowledge-Based Production Planning, Scheduling and Control.
[194] Osorio, M., & Glover, F. (2001). Logic cuts using surrogate constraint analysis in the multidimensional knapsack problem. In Gervet, C., & Wallace, M. (Eds.) Proceedings of the International Workshop on Integration of Artificial Intelligence and Operations Research Techniques in Constraint Programming for Combintaorial Optimization Problems (CPAIOR 2001). Ashford, U.K.
[195] Ottosson, G., Thorsteinsson, E., & Hooker, J.N. (1999). Mixed global constraints and inference in hybrid IP-CLP solvers. In Proceedings of CP99 Post-Conference Workshop on Large-Scale Combinatorial Optimization and Constraints. http://www.dash.co.uk/wscp99 (pp. 57-78). · Zbl 1026.90062
[196] Ottosson, G; Thorsteinsson, E; Hooker, JN, Mixed global constraints and inference in hybrid CLP-IP solvers, Annals of Mathematics and Artificial Intelligence, 34, 271-290, (2002) · Zbl 1026.90062
[197] Perez, G., & Régin, J.C. (2015). Efficient operations on mdds for building constraint programming models. In Proceedings of IJCAI, pp. 374-380.
[198] Perez, G., & Régin, J.C. (2016). Constructions and in-place operations for mdds based constraints. In Proceedings of CPAIOR, LNCS, vol. 9676, pp. 279-293. Springer. · Zbl 06598671
[199] Perez, G., & Régin, J.C. (2017). MDDs are Efficient Modeling Tools: An Application to Some Statistical Constraints. In Proceedings of CPAIOR, LNCS, vol. 10335, pp. 30-40. Springer. · Zbl 06756573
[200] Pesant, G. (2001). A filtering algorithm for the stretch constraint. In Walsh, T. (Ed.) Principles and Practice of Constraint Programming (CP 2001), Lecture Notes in Computer Science, vol. 2239, pp. 183-195. Springer. · Zbl 1067.68140
[201] Pesant, G. (2004). A regular language membership constraint for finite sequences of variables. In Wallace, M. (Ed.) Principles and Practice of Constraint Programming (CP 2004), Lecture Notes in Computer Science, vol. 3258, pp. 482-495. Springer. · Zbl 1152.68573
[202] Pisinger, D; Sigurd, M, Using decomposition techniques and constraint programming for solving the two-dimensional bin-packing problem, INFORMS Journal on Computing, 19, 36-51, (2007) · Zbl 1241.90118
[203] Powell, W.B. (2007). Approximate Dynamic Programming: Solving the Curses of Dimensionality (Wiley Series in Probability and Statistics). New York: Wiley-Interscience.
[204] Quadrifoglio, L., Dessouky, M.M., & Nez, F.O. (2008). Mobility allowance shuttle transit (MAST) services: MIP formulation and strengthenining with logic constraints. In Perron, L., & Trick, M.A. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 5015, pp. 387-391. Springer. · Zbl 1137.90336
[205] Rasmussen, R; Trick, MA, A benders approach to the constrained minimum break problem, European Journal of Operational Research, 177, 198-213, (2007) · Zbl 1102.90026
[206] Refalo, P. (1999). Tight cooperation and its application in piecewise linear optimization. In Jaffar, J. (Ed.) Principles and Practice of Constraint Programming (CP 1999), Lecture Notes in Computer Science, vol. 1713, pp. 375-389. Springer.
[207] Refalo, P. (2000). Linear formulation of constraint programming models and hybrid solvers. In Dechter, R. (Ed.) Principles and Practice of Constraint Programming (CP 2000), Lecture Notes in Computer Science, vol. 1894, pp. 369-383. Springer. · Zbl 1044.68792
[208] Régin, J.C. (1994). A filtering algorithm for constraints of difference in CSP. In National Conference on Artificial Intelligence (AAAI 1994), pp. 362-367. AAAI Press.
[209] Régin, J.C. (1996). Generalized arc consistency for global cardinality constraint. In National Conference on Artificial Intelligence (AAAI 1996), pp. 209-215. AAAI Press.
[210] Régin, J.C. (1999). Arc Consistency for Global Cardinality Constraints with Costs. In Proceedings of CP, Lecture Notes in Computer Science, vol. 1713, pp. 390-404. Springer.
[211] Régin, JC, Cost-based arc consistency for global cardinality constraints, Constraints, 7, 387-405, (2002) · Zbl 1028.68157
[212] Riedler, M., & Raidl, G. (2016). Solving a selective dial-a-ride problem with logic-based Benders decomposition. Technical report AC-TR-16-007. TU Wien: Institute of Computer Graphics and Algorithms. · Zbl 06901606
[213] Rodošek, R; Wallace, M; Hajian, M, A new approach to integrating mixed integer programming and constraint logic programming, Annals of Operations Research, 86, 63-87, (1999) · Zbl 0918.90109
[214] Rousseau, L.M. (2004). Stabilization issues for constraint programming based column generation. In Régin, J.C., & Rueher, M. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 3011, pp. 402-408. Springer. · Zbl 1094.68655
[215] Rousseau, L.M., Gendreau, M., & Pesant, G. (2002). Solving small VRPTWs with constraint programming based column generation. In Jussien, N., & Laburthe, F. (Eds.) Proceedings of the International Workshop on Integration of Artificial Intelligence and Operations Research Techniques in Constraint Programming for Combintaorial Optimization Problems (CPAIOR 2002). France: Le Croisic. · Zbl 1062.90007
[216] Rousseau, LM; Gendreau, M; Pesant, G; Focacci, F, Solving VRPTWs with constraint programming based column generation, Annals of Operations Research, 130, 199-216, (2004) · Zbl 1062.90007
[217] Ruggiero, M., Guerri, A., Bertozzi, D., Poletti, F., & Milano, M. (2006). Communication-aware allocation and scheduling framework for stream-oriented multi-processor systems-on-chip. In Proceedings of the Conference on Design, Automation and Test in Europe, pp. 3-8. European Design and Automation Association.
[218] Sadykov, R. (2004). A hybrid branch-and-cut algorithm for the one-machine scheduling problem. In Régin, J.C., & Rueher, M. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 3011, pp. 409-415. Springer. · Zbl 1094.90562
[219] Sadykov, R; Wolsey, LA, Integer programming and constraint programming in solving a multimachine assignment scheduling problem with deadlines and release dates, INFORMS Journal on Computing, 18, 209-217, (2006) · Zbl 1241.90056
[220] Salvagnin, D., & Walsh, T. (2012). A hybrid MIP/CP approach for multi-activity shift scheduling. In Milano, M. (Ed.) Principles and Practice of Constraint Programming, Lecture Notes in Computer Science, vol. 7514, pp. 633-646. Springer.
[221] Satish, N., Ravindran, K., & Keutzer, K. (2007). A decomposition-based constraint optimization approach for statically scheduling task graphs with communication delays to multiprocessors. In Proceedings of the Conference on Design, Automation and Test in Europe, pp. 57-62. EDA Consortium.
[222] Sellmann, M. (2004). Theoretical foundations of constraint programming-based Lagrangean relaxation. In Wallace, M. (Ed.) Principles and Practice of Constraint Programming (CP 2004), Lecture Notes in Computer Science, vol. 3258, pp. 634-647. Springer. · Zbl 1152.68584
[223] Sellmann, M., & Fahle, T. (2001). Constraint programming based Lagrangian relaxation for a multimedia application. In Gervet, C., & Wallace, M. (Eds.) Proceedings of the International Workshop on Integration of Artificial Intelligence and Operations Research Techniques in Constraint Programming for Combintaorial Optimization Problems (CPAIOR 2001). Ashford: U.K. · Zbl 1159.90479
[224] Sellmann, M; Fahle, T, Constraint programming based Lagrangian relaxation for the automatic recording problem, Annals of Operations Research, 118, 17-33, (2003) · Zbl 1026.90510
[225] Sellmann, M., Kliewer, G., & Koberstein, A. (2002). Lagrangian Cardinality Cuts and Variable Fixing for Capacitated Network Design. In Proceedings of ESA, Lecture Notes in Computer Science, vol. 2461, pp. 845-858. Springer. · Zbl 1040.90004
[226] Sellmann, M; Zervoudakis, K; Stamatopoulos, P; Fahle, T, Crew assignment via constraint programming: integrating column generation and heuristic tree search, Annals of Operations Research, 115, 207-225, (2002) · Zbl 1013.90091
[227] Shen, K., & Schimpf, J. (2005). Eplex: Harnessing Mathematical Programming Solvers for Constraint Logic Programming. In Proceedings of CP, Lecture Notes in Computer Science, vol. 3709, pp. 622-636. Springer.
[228] Smith, B.M., Brailsford, S.C., Hubbard, P.M., & Williams, H.P. (1995). The progressive party problem: Integer linear programming and constraint programming compared. In Montanari, U., & Rossi, F. (Eds.) Principles and Practice of Constraint Programming (CP 1995), Lecture Notes in Computer Science, vol. 976, pp. 36-52. Springer.
[229] Steiger, R., van Hoeve, W.J., & Szymanek, R. (2011). An efficient generic network flow constraint. In Proceedings of the ACM Symposium on Applied Computing (SAC), pp. 893-900.
[230] Stuckey, P.J, de la Banda, M.G., Maher, M., Marriott, K., Slaney, J., Somogyi, Z., Wallace, M., & Walsh, T. (2005). The G12 project: Mapping solver independent models to efficient solutions. In van Beek, P. (Ed.) Principles and Practice of Constraint Programming (CP 2005), Lecture Notes in Computer Science, vol. 3668, pp. 314-327. Springer. · Zbl 1165.68517
[231] Taşkın, ZC; Smith, JC; Ahmed, S; Schaefer, AJ, Cutting plane algorithms for solving a stochastic edge-partition problem, Discrete Optimization, 6, 420-435, (2009) · Zbl 1179.90322
[232] Tarim, S., Armagan, S., & Miguel, I. (2006). A hybrid Benders decomposition method for solving stochastic constraint programs with linear recourse. In Hnich, B., Carlsson, M., Fages, F., & Rossi, F. (Eds.) International Workshop on Constraint Solving and Constraint Logic Programming (CSCLP), pp. 133-148. Springer. · Zbl 1180.68252
[233] Terekhov, D., Beck, J.C., & Brown, K.N. (2007). Solving a stochastic queueing design and control problem with constraint programming. In Proceedings of the 22nd National Conference on Artificial Intelligence (AAAI 2007), vol. 1, pp. 261-266. AAAI Press.
[234] Thorsteinsson, E. (2001). Branch and check: A hybrid framework integrating mixed integer programming and constraint logic programming. In Walsh, T. (Ed.) Principles and Practice of Constraint Programming (CP 2001), Lecture Notes in Computer Science, vol. 2239, pp. 16-30. Springer. · Zbl 1067.68677
[235] Timpe, C, Solving planning and scheduling problems with combined integer and constraint programming, OR Spectrum, 24, 431-448, (2002) · Zbl 1028.90017
[236] Tjandraatmadja, C., & van Hoeve, W.J. Target cuts from relaxed decision diagrams. INFORMS Journal on Computing (to appear).
[237] Torres, P; Lopez, P, On not-first/not-last conditions in disjunctive scheduling, European Journal of Operational Research, 127, 332-343, (2000) · Zbl 0990.90049
[238] Tran, T.T., & Beck, J.C. (2012). Logic-based Benders decomposition for alternative resource scheduling with sequence dependent setups. In European Conference on Artificial Intelligence (ECAI), Frontiers in Artificial Intelligence and Applications, vol. 242, pp. 774-779. IOS Press. · Zbl 1327.90075
[239] Trick, M. (2001). A dynamic programming approach for consistency and propagation for knapsack constraints. In Gervet, C., & Wallace, M. (Eds.) Proceedings, Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR 2001) (pp. 113-124). Ashford: U.K.
[240] Trick, MA, A dynamic programming approach for consistency and propagation for knapsack constraints, Annals of Operations Research, 118, 73-84, (2003) · Zbl 1027.90075
[241] Trick, M.A., & Yildiz, H. (2007). Benders cuts guided search for the traveling umpire problem. In van Hentemryck, P., & Wolsey, L. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 4510, pp. 332-345. Springer. · Zbl 1214.90106
[242] Tu̇rkay, M; Grossmann, IE, Logic-based MINLP algorithms for the optimal synthesis of process networks, Computers and Chemical Engineering, 20, 959-978, (1996)
[243] Van Hentenryck, P., Lustig, I., Michel, L., & Puget, J.F. (1999). The OPL Optimization Programming Language. Cambridge: MIT Press.
[244] van Hoeve, W.J. (2003). A hybrid constraint programming and semidefinite programming approach for the stable set problem. In Rossi, F. (Ed.) Principles and Practice of Constraint Programming (CP 2003), Lecture Notes in Computer Science, vol. 2833, pp. 407-421. Springer. · Zbl 1273.90181
[245] van Hoeve, W.J. (2004). A hyper-arc consistency algorithm for the soft alldifferent constraint. In Wallace, M. (Ed.) Principles and Practice of Constraint Programming (CP 2004), Lecture Notes in Computer Science, vol. 3258, pp. 679-689. Springer. · Zbl 1152.68595
[246] van Hoeve, W.J., Pesant, G., Rousseau, L.M., & Sabharwal, A. (2006). Revisiting the sequence constraint. In Benhamou, F. (Ed.) Principles and Practice of Constraint Programming (CP 2006), Lecture Notes in Computer Science, vol. 4204, pp. 620-634. Springer. · Zbl 1160.68573
[247] Veinott, AF; Wagner, H, Optimal capacity scheduling I, Operations Research, 10, 518-532, (1962) · Zbl 0113.14301
[248] Wallace, M; Novello, MS; Schimpf, J, Eclipse: A platform for constraint logic programming, ICL Systems Journal, 12, 159-200, (1997)
[249] Williams, HP; Yan, H, Representations of the all_different predicate of constraint satisfaction in integer programming, INFORMS Journal on Computing, 13, 96-103, (2001) · Zbl 1238.90103
[250] Xia, Q., Eremin, A., & Wallace, M. (2004). Problem decomposition for traffic diversions. In Régin, J.C., & Rueher, M. (Eds.) CPAIOR Proceedings, Lecture Notes in Computer Science, vol. 3011, pp. 348-363. Springer. · Zbl 1094.90515
[251] Yan, H; Hooker, JN, Tight representations of logical constraints as cardinality rules, Mathematical Programming, 85, 363-377, (1995) · Zbl 0954.90043
[252] Yunes, TH; Aron, I; Hooker, JN, An integrated solver for optimization problems, Operations Research, 58, 342-356, (2010) · Zbl 1226.90047
[253] Yunes, T.H., Aron, I., & Hooker, J.N. An integrated solver for optimization problems. Operations Research (to appear). · Zbl 1226.90047
[254] Yunes, T.H., Moura, A.V, & de Souza, C.C. (1999). Exact solutions for real world crew scheduling problems. Philadelphia: Presentation at INFORMS national meeting.
[255] Yunes, TH; Moura, AV; Souza, CC, Hybrid column generation approaches for urban transit crew management problems, Transportation Science, 39, 273-388, (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.