Zhai, Xiaoping; Li, Yongsheng Global large solutions and optimal time-decay estimates to the Korteweg system. (English) Zbl 07314914 Discrete Contin. Dyn. Syst. 41, No. 3, 1387-1413 (2021). MSC: 35Q35 76N06 35B45 35A01 76D05 PDF BibTeX XML Cite \textit{X. Zhai} and \textit{Y. Li}, Discrete Contin. Dyn. Syst. 41, No. 3, 1387--1413 (2021; Zbl 07314914) Full Text: DOI
Xin, Zhouping; Xu, Jiang Optimal decay for the compressible Navier-Stokes equations without additional smallness assumptions. (English) Zbl 1454.76067 J. Differ. Equations 274, 543-575 (2021). MSC: 76N10 76N06 35Q30 PDF BibTeX XML Cite \textit{Z. Xin} and \textit{J. Xu}, J. Differ. Equations 274, 543--575 (2021; Zbl 1454.76067) Full Text: DOI
Shi, Weixuan; Xu, Jiang The large-time behavior of solutions in the critical \(L^p\) framework for compressible viscous and heat-conductive gas flows. (English) Zbl 1452.76203 J. Math. Phys. 61, No. 6, 061516, 27 p. (2020). MSC: 76N10 76N06 35Q30 80A19 PDF BibTeX XML Cite \textit{W. Shi} and \textit{J. Xu}, J. Math. Phys. 61, No. 6, 061516, 27 p. (2020; Zbl 1452.76203) Full Text: DOI
Zhai, Xiaoping; Ye, Hailong On global large energy solutions to the viscous shallow water equations. (English) Zbl 1451.35145 Discrete Contin. Dyn. Syst., Ser. B 25, No. 11, 4277-4293 (2020). MSC: 35Q35 76N10 76B15 35B40 35B45 42B25 PDF BibTeX XML Cite \textit{X. Zhai} and \textit{H. Ye}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 11, 4277--4293 (2020; Zbl 1451.35145) Full Text: DOI
Chen, Qing; Wu, Guochun; Zhang, Yinghui; Zou, Lan Optimal time decay rates for the compressible Navier-Stokes system with and without Yukawa-type potential. (English) Zbl 1444.35123 Electron. J. Differ. Equ. 2020, Paper No. 102, 25 p. (2020). MSC: 35Q30 76N15 PDF BibTeX XML Cite \textit{Q. Chen} et al., Electron. J. Differ. Equ. 2020, Paper No. 102, 25 p. (2020; Zbl 1444.35123) Full Text: Link
Hu, Xianpeng; Wu, Guochun Optimal decay rates of isentropic compressible Navier-Stokes equations with discontinuous initial data. (English) Zbl 1442.35302 J. Differ. Equations 269, No. 10, 8132-8172 (2020). MSC: 35Q30 35K65 35B05 76N10 PDF BibTeX XML Cite \textit{X. Hu} and \textit{G. Wu}, J. Differ. Equations 269, No. 10, 8132--8172 (2020; Zbl 1442.35302) Full Text: DOI
Zhai, Xiaoping; Chen, Zhi-Min Long-time behavior for three dimensional compressible viscousand heat-conductive gases. (English) Zbl 1435.76063 J. Math. Fluid Mech. 22, No. 3, Paper No. 38, 17 p. (2020). MSC: 76N15 35Q35 35Q30 35L65 PDF BibTeX XML Cite \textit{X. Zhai} and \textit{Z.-M. Chen}, J. Math. Fluid Mech. 22, No. 3, Paper No. 38, 17 p. (2020; Zbl 1435.76063) Full Text: DOI
Zhai, Xiaoping; Li, Yongsheng; Zhou, Fujun Global large solutions to the three dimensional compressible Navier-Stokes equations. (English) Zbl 07190288 SIAM J. Math. Anal. 52, No. 2, 1806-1843 (2020). Reviewer: Song Jiang (Beijing) MSC: 35Q35 35-02 35B40 35B45 35D35 76N10 42B25 PDF BibTeX XML Cite \textit{X. Zhai} et al., SIAM J. Math. Anal. 52, No. 2, 1806--1843 (2020; Zbl 07190288) Full Text: DOI
Xu, Jiang A low-frequency assumption for optimal time-decay estimates to the compressible Navier-Stokes equations. (English) Zbl 1448.76125 Commun. Math. Phys. 371, No. 2, 525-560 (2019). MSC: 76N06 76N10 PDF BibTeX XML Cite \textit{J. Xu}, Commun. Math. Phys. 371, No. 2, 525--560 (2019; Zbl 1448.76125) Full Text: DOI
He, Lingbing; Huang, Jingchi; Wang, Chao Global stability of large solutions to the 3D compressible Navier-Stokes equations. (English) Zbl 1430.35187 Arch. Ration. Mech. Anal. 234, No. 3, 1167-1222 (2019). Reviewer: Cheng He (Beijing) MSC: 35Q30 35A01 76N10 35Q35 PDF BibTeX XML Cite \textit{L. He} et al., Arch. Ration. Mech. Anal. 234, No. 3, 1167--1222 (2019; Zbl 1430.35187) Full Text: DOI arXiv
Chikami, Noboru; Kobayashi, Takayuki Global well-posedness and time-decay estimates of the compressible Navier-Stokes-Korteweg system in critical Besov spaces. (English) Zbl 1420.35228 J. Math. Fluid Mech. 21, No. 2, Paper No. 31, 32 p. (2019). MSC: 35Q35 42B37 76T10 35B35 76N10 35A01 PDF BibTeX XML Cite \textit{N. Chikami} and \textit{T. Kobayashi}, J. Math. Fluid Mech. 21, No. 2, Paper No. 31, 32 p. (2019; Zbl 1420.35228) Full Text: DOI
Chen, Zhi-Min; Zhai, Xiaoping Global large solutions and incompressible limit for the compressible Navier-Stokes equations. (English) Zbl 1416.35181 J. Math. Fluid Mech. 21, No. 2, Paper No. 26, 23 p. (2019). MSC: 35Q30 76N10 35A01 PDF BibTeX XML Cite \textit{Z.-M. Chen} and \textit{X. Zhai}, J. Math. Fluid Mech. 21, No. 2, Paper No. 26, 23 p. (2019; Zbl 1416.35181) Full Text: DOI
Pan, Xinghong; Xu, Jiang Global existence and optimal decay estimates of the compressible viscoelastic flows in \( L^p \) critical spaces. (English) Zbl 1412.35264 Discrete Contin. Dyn. Syst. 39, No. 4, 2021-2057 (2019). MSC: 35Q35 35B40 35L60 76A10 76N10 PDF BibTeX XML Cite \textit{X. Pan} and \textit{J. Xu}, Discrete Contin. Dyn. Syst. 39, No. 4, 2021--2057 (2019; Zbl 1412.35264) Full Text: DOI
Shi, Weixuan; Xu, Jiang A sharp time-weighted inequality for the compressible Navier-Stokes-Poisson system in the critical \(L^p\) framework. (English) Zbl 1412.35267 J. Differ. Equations 266, No. 10, 6426-6458 (2019). MSC: 35Q35 35B40 76N15 35D35 76X05 PDF BibTeX XML Cite \textit{W. Shi} and \textit{J. Xu}, J. Differ. Equations 266, No. 10, 6426--6458 (2019; Zbl 1412.35267) Full Text: DOI
Bie, Qunyi; Wang, Qiru; Yao, Zheng-an Optimal decay rate for the compressible flow of liquid crystals in \(L^p\) type critical spaces. (English) Zbl 1406.35259 J. Math. Fluid Mech. 20, No. 4, 1707-1736 (2018). MSC: 35Q35 35B40 76A15 42B25 76N10 PDF BibTeX XML Cite \textit{Q. Bie} et al., J. Math. Fluid Mech. 20, No. 4, 1707--1736 (2018; Zbl 1406.35259) Full Text: DOI
Danchin, Raphaël; Xu, Jiang Optimal decay estimates in the critical \(L^{p}\) framework for flows of compressible viscous and heat-conductive gases. (English) Zbl 1404.76224 J. Math. Fluid Mech. 20, No. 4, 1641-1665 (2018). MSC: 76N15 35Q30 35L65 35K65 PDF BibTeX XML Cite \textit{R. Danchin} and \textit{J. Xu}, J. Math. Fluid Mech. 20, No. 4, 1641--1665 (2018; Zbl 1404.76224) Full Text: DOI
Shi, Weixuan; Xu, Jiang Large-time behavior of strong solutions to the compressible magnetohydrodynamic system in the critical framework. (English) Zbl 1393.76142 J. Hyperbolic Differ. Equ. 15, No. 2, 259-290 (2018). MSC: 76W05 35Q35 35L65 35K65 PDF BibTeX XML Cite \textit{W. Shi} and \textit{J. Xu}, J. Hyperbolic Differ. Equ. 15, No. 2, 259--290 (2018; Zbl 1393.76142) Full Text: DOI
Xu, Jiang A note on time-decay estimates for the compressible Navier-Stokes equations. (English) Zbl 1444.76087 Acta Math. Sin., Engl. Ser. 34, No. 4, 662-680 (2018). MSC: 76N06 76N10 PDF BibTeX XML Cite \textit{J. Xu}, Acta Math. Sin., Engl. Ser. 34, No. 4, 662--680 (2018; Zbl 1444.76087) Full Text: DOI
Pan, Xinghong; Zhu, Lu The incompressible limit for compressible MHD equations in \(L^p\) type critical spaces. (English) Zbl 1387.35500 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 170, 21-46 (2018). MSC: 35Q35 76W05 46E35 PDF BibTeX XML Cite \textit{X. Pan} and \textit{L. Zhu}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 170, 21--46 (2018; Zbl 1387.35500) Full Text: DOI
Bie, Qunyi; Wang, Qiru; Yao, Zheng-an Optimal decay rate for the compressible Navier-Stokes-Poisson system in the critical \(L^p\) framework. (English) Zbl 1375.35360 J. Differ. Equations 263, No. 12, 8391-8417 (2017). MSC: 35Q35 35B40 76N15 42B25 PDF BibTeX XML Cite \textit{Q. Bie} et al., J. Differ. Equations 263, No. 12, 8391--8417 (2017; Zbl 1375.35360) Full Text: DOI