zbMATH — the first resource for mathematics

Hydrodynamic flows on curved surfaces: spectral numerical methods for radial manifold shapes. (English) Zbl 1415.76489
Summary: We formulate hydrodynamic equations and spectrally accurate numerical methods for investigating the role of geometry in flows within two-dimensional fluid interfaces. To achieve numerical approximations having high precision and level of symmetry for radial manifold shapes, we develop spectral Galerkin methods based on hyperinterpolation with Lebedev quadratures for \(L^2\)-projection to spherical harmonics. We demonstrate our methods by investigating hydrodynamic responses as the surface geometry is varied. Relative to the case of a sphere, we find significant changes can occur in the observed hydrodynamic flow responses as exhibited by quantitative and topological transitions in the structure of the flow. We present numerical results based on the Rayleigh-dissipation principle to gain further insights into these flow responses. We investigate the roles played by the geometry especially concerning the positive and negative Gaussian curvature of the interface. We provide general approaches for taking geometric effects into account for investigations of hydrodynamic phenomena within curved fluid interfaces.

76M22 Spectral methods applied to problems in fluid mechanics
76M30 Variational methods applied to problems in fluid mechanics
35R01 PDEs on manifolds
58J90 Applications of PDEs on manifolds
Full Text: DOI
[1] Gilette, A.; Holst, M.; Zhu, Y., Finite element exterior calculus for evolution problems, J. Comput. Math., 35, 2, 187-212, (2017) · Zbl 1399.65252
[2] Abraham, R.; Marsden, J. E.; Raiu, T. S., Manifolds, tensor analysis, and applications, vol. 75, (1988), Springer New York
[3] Acheson, D. J., Elementary fluid dynamics, Oxford Applied Mathematics and Computing Science Series, (1990) · Zbl 0719.76001
[4] Arnold, Douglas N.; Falk, Richard S.; Winther, Ragnar, Finite element exterior calculus, homological techniques, and applications, Acta Numer., 15, 1-155, (2006) · Zbl 1185.65204
[5] Arroyo, Marino; DeSimone, Antonio, Relaxation dynamics of fluid membranes, Phys. Rev. E, 79, 3, (March 2009)
[6] Atkinson, Kendall; Han, Weimin, Spherical harmonics and approximations on the unit sphere: an introduction, (2010), Springer · Zbl 1254.41015
[7] Atzberger, P. J.; Kramer, P. R.; Peskin, C. S., A stochastic immersed boundary method for fluid-structure dynamics at microscopic length scales, J. Comput. Phys., 224, 2, 1255-1292, (2007) · Zbl 1124.74052
[8] Atzberger, Paul J., Stochastic eulerian Lagrangian methods for fluid-structure interactions with thermal fluctuations, J. Comput. Phys., 230, 8, 2821-2837, (April 2011)
[9] Azencot, Omri; Vantzos, Orestis; Wardetzky, Max; Rumpf, Martin; Ben-Chen, Mirela, Functional thin films on surfaces, (Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’15, (2015), ACM New York, NY, USA), 137-146
[10] Batchelor, G. K., An introduction to fluid dynamics, Cambridge Mathematical Library, (2000), Cambridge University Press · Zbl 0958.76001
[11] Beentjes, Casper H. L., Quadrature on spherical surface, (2015), Technical Report
[12] Bochev, Pavel B.; Hyman, James M., Principles of mimetic discretizations of differential operators, (Arnold, Douglas N.; Bochev, Pavel B.; Lehoucq, Richard B.; Nicolaides, Roy A.; Shashkov, Mikhail, Compatible Spatial Discretizations, (2006), Springer New York, NY), 89-119 · Zbl 1110.65103
[13] Brakke, Kenneth A., The surface evolver, Exp. Math., 1, 2, 141-165, (1992) · Zbl 0769.49033
[14] Braun, R. J.; Usha, R.; McFadden, G. B.; Driscoll, T. A.; Cook, L. P.; King-Smith, P. E., Thin film dynamics on a prolate spheroid with application to the cornea, J. Eng. Math., 73, 1, 121-138, (Apr 2012)
[15] Scott Ridgway Brenner, Susanne, The mathematical theory of finite element methods, (2008), Springer · Zbl 1135.65042
[16] Bresme, F.; Oettel, M., Nanoparticles at fluid interfaces, J. Phys. Condens. Matter, 19, 41, (2007)
[17] Cabral, Brian; Leedom, Leith Casey, Imaging vector fields using line integral convolution, (Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’93, (1993), ACM New York, NY, USA), 263-270
[18] Cai, W.; Lubensky, T. C., Hydrodynamics and dynamic fluctuations of fluid membranes, Phys. Rev. E, 52, 4251-4266, (1995)
[19] Cavallaro, Marcello; Botto, Lorenzo; Lewandowski, Eric P.; Wang, Marisa; Stebe, Kathleen J., Curvature-driven capillary migration and assembly of rod-like particles, Proc. Natl. Acad. Sci. USA, 108, 52, 20923-20928, (December 2011)
[20] Choi, S. Q.; Steltenkamp, S.; Zasadzinski, J. A.; Squires, T. M., Active microrheology and simultaneous visualization of sheared phospholipid monolayers, Nat. Commun., 2, 312, (May 2011)
[21] Debus, J.-D.; Mendoza, M.; Succi, S.; Herrmann, H. J., Energy dissipation in flows through curved spaces, Sci. Rep., 7, (February 2017)
[22] Desbrun, M.; Hirani, A. N.; Marsden, J. E., Discrete exterior calculus for variational problems in computer vision and graphics, (42nd IEEE International Conference on Decision and Control (IEEE Cat. No. 03CH37475), vol. 5, (2003)), 4902-4907
[23] Deserno, Markus, Fluid lipid membranes: from differential geometry to curvature stresses, Membrane Mechanochemistry: From the Molecular to the Cellular Scale, Chem. Phys. Lipids, 185, 11-45, (January 2015)
[24] Driscoll, J. R.; Healy, D. M., Computing Fourier transforms and convolutions on the 2-sphere, Adv. Appl. Math., 15, 2, 202-250, (June 1994)
[25] Edwards, D. A.; Wasan, D. T., Surface rheology ii. the curved fluid surface, J. Rheol., 32, 5, 447-472, (1988) · Zbl 0669.76004
[26] Elcott, Sharif; Schröder, Peter, Building your own dec at home, (ACM SIGGRAPH 2005 Courses, SIGGRAPH ’05, (2005), ACM New York, NY, USA)
[27] Elcott, Sharif; Tong, Yiying; Kanso, Eva; Schröder, Peter; Desbrun, Mathieu, Stable, circulation-preserving, simplicial fluids, ACM Trans. Graph., 26, 1, (January 2007)
[28] Ericksen, J. L.; Truesdell, C., Exact theory of stress and strain in rods and shells, Arch. Ration. Mech. Anal., 1, 1, 295-323, (Jan 1957)
[29] Ershov, Dmitry; Sprakel, Joris; Appel, Jeroen; Cohen Stuart, Martien A.; van der Gucht, Jasper, Capillarity-induced ordering of spherical colloids on an interface with anisotropic curvature, Proc. Natl. Acad. Sci., 110, 23, 9220-9224, (2013)
[30] Feng, Z. C.; Leal, L. G., Nonlinear bubble dynamics, Annu. Rev. Fluid Mech., 29, 1, 201-243, (1997)
[31] Desbrun, Mathieu; Schroder, Peter; de Goes, Fernando; Crane, Keenan, Digital geometry processing with discrete exterior calculus, (SIGGRAPH, (2013))
[32] Gelfand, I. M.; Fomin, S. V., Calculus of variations, (2000), Dover · Zbl 0964.49001
[33] Green, A. E.; Rivlin, R. S., On Cauchy’s equations of motion, Z. Angew. Math. Phys., 15, 290-293, (1964) · Zbl 0122.18403
[34] Greer, John B.; Bertozzi, Andrea L.; Sapiro, Guillermo, Fourth order partial differential equations on general geometries, J. Comput. Phys., 216, 1, 216-246, (July 2006)
[35] Gross, B.; Atzberger, P. J., Spectral numerical exterior calculus methods for differential equations on radial manifolds, J. Sci. Comput., (Dec 2017)
[36] Guven, Jemal; Vázquez-Montejo, Pablo, The geometry of fluid membranes: variational principles, symmetries and conservation laws, 167-219, (2018), Springer International Publishing Cham, chapter 4
[37] Whitney, H., Differentiable manifolds, Ann. Math., 37, (1936) · JFM 62.1454.01
[38] Healy, D. M.; Rockmore, D. N.; Kostelec, P. J.; Moore, S., FFTs for the 2-sphere-improvements and variations, J. Fourier Anal. Appl., 9, 4, 341-385, (2003) · Zbl 1037.65136
[39] Henle, M. L.; McGorty, R.; Schofield, A. B.; Dinsmore, A. D.; Levine, A. J., The effect of curvature and topology on membrane hydrodynamics, Europhys. Lett., 84, 4, (2008)
[40] Hermans, Eline; Saad Bhamla, M.; Kao, Peter; Fuller, Gerald G.; Vermant, Jan, Lung surfactants and different contributions to thin film stability, Soft Matter, 11, 8048-8057, (2015)
[41] Hesse, Kerstin; Sloan, Ian H.; Womersley, Robert S., Numerical integration on the sphere, 1185-1219, (2010), Springer Berlin, Heidelberg · Zbl 1197.86018
[42] Hirani, Anil N., Discrete exterior calculus, (2003), Caltech, PhD thesis
[43] Honerkamp-Smith, Aurelia R.; Woodhouse, Francis G.; Kantsler, Vasily; Goldstein, Raymond E., Membrane viscosity determined from shear-driven flow in giant vesicles, Phys. Rev. Lett., 111, 3, (July 2013)
[44] Jost, Jurgen, Riemannian geometry and geometric analysis, (1991), Springer · Zbl 0732.53003
[45] Kanso, Eva; Arroyo, Marino; Tong, Yiying; Yavari, Arash; Marsden, Jerrold G.; Desbrun, Mathieu, On the geometric character of stress in continuum mechanics, Z. Angew. Math. Phys., 58, 5, 843-856, (2007) · Zbl 1126.74003
[46] Kellay, H., Hydrodynamics experiments with soap films and soap bubbles: a short review of recent experiments, Phys. Fluids, 29, 11, (2017)
[47] Atkinson, Kendall, Numerical integration on the sphere, J. Aust. Math. Soc. Ser. B, 23, 332-347, (1982) · Zbl 0497.65010
[48] Kim, S.; Karrila, S. J., Microhydrodynamics: principles and selected applications, (1991), Butterworth-Heinemann
[49] Kornek, U.; Mauller, F.; Harth, K.; Hahn, A.; Ganesan, S.; Tobiska, L.; Stannarius, R., Oscillations of soap bubbles, New J. Phys., 12, 7, (2010)
[50] Kralchevsky, P. A.; Eriksson, J. C.; Ljunggren, S., Theory of curved interfaces and membranes: mechanical and thermodynamical approaches, Adv. Colloid Interface Sci., 48, 19-59, (April 1994)
[51] Kunis, Stefan; Potts, Daniel, Fast spherical Fourier algorithms, J. Comput. Appl. Math., 161, 1, 75-98, (December 2003)
[52] Lamb, H., Hydrodynamics, (1895), University Press · JFM 26.0868.02
[53] (Landau, L. D.; Lifshitz, E. M., Mechanics, (1976), Butterworth-Heinemann Oxford)
[54] Lebedev, V. I.; Laikov, D. N., A quadrature formula for the sphere of the 131st algebraic order of accuracy, Dokl. Math., 59, 477-481, (1999)
[55] Lebedev, V. I., Quadratures on a sphere, USSR Comput. Math. Math. Phys., 16, 2, 10-24, (1976) · Zbl 0348.65023
[56] Levine, A. J.; MacKintosh, F. C., Dynamics of viscoelastic membranes, Phys. Rev. E, 66, (2002)
[57] Lieb, E. H.; Loss, M., Analysis, (2001), American Mathematical Society · Zbl 0966.26002
[58] Lin, C.; Perry, M. J., Shape description using surface triangulation, (Proceedings, IEEE Workshop on Computer Vision: Representation and Control, (1982)), 38-43
[59] Bau, David; Trefethen, Lloyd N., Numerical linear algebra, (1997), SIAM · Zbl 0874.65013
[60] Manikantan, Harishankar; Squires, Todd M., Pressure-dependent surface viscosity and its surprising consequences in interfacial lubrication flows, Phys. Rev. Fluids, 2, (Feb 2017)
[61] Marsden, J. E.; Hughes, T. J.R., Mathematical foundations of elasticity, (1994), Dover
[62] Leok Mathieu Desbrun, Melvin; Hirani, Anil N.; Marsden, Jerrold E., Discrete exterior calculus, (2003), Technical Report
[63] Mavrovouniotis, Gretchen M.; Brenner, Howard, A micromechanical investigation of interfacial transport processes. I. interfacial conservation equations, Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Eng. Sci., 345, 1675, 165-207, (1993) · Zbl 0803.76092
[64] Mavrovouniotis, Gretchen M.; Brenner, Howard; Edwards, David A.; Ting, Li, A micromechanical investigation of interfacial transport processes. II. interfacial constitutive equations, Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Eng. Sci., 345, 1675, 209-228, (1993) · Zbl 0803.76093
[65] McIvor, Alan M.; Valkenburg, Robert J., A comparison of local surface geometry estimation methods, Mach. Vis. Appl., 10, 1, 17-26, (May 1997)
[66] Meurer, Aaron; Smith, Christopher P.; Paprocki, Mateusz; Čertík, Ondřej; Kirpichev, Sergey B.; Rocklin AMiT Kumar, Matthew; Ivanov, Sergiu; Moore, Jason K.; Singh, Sartaj; Rathnayake, Thilina; Vig, Sean; Granger, Brian E.; Muller, Richard P.; Bonazzi, Francesco; Gupta, Harsh; Vats, Shivam; Johansson, Fredrik; Pedregosa, Fabian; Curry, Matthew J.; Terrel, Andy R.; Roučka, Štěpán; Saboo, Ashutosh; Fernando, Isuru; Kulal, Sumith; Cimrman, Robert; Scopatz, Anthony, Sympy: symbolic computing in python, PeerJ Comput. Sci., 3, e103, (January 2017)
[67] Mogilner, Alex; Manhart, Angelika, Intracellular fluid mechanics: coupling cytoplasmic flow with active cytoskeletal gel, Annu. Rev. Fluid Mech., 50, 1, 347-370, (2018) · Zbl 1384.76063
[68] Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi, Discrete exterior calculus discretization of incompressible Navier-Stokes equations over surface simplicial meshes, J. Comput. Phys., 312, 175-191, (2016) · Zbl 1351.76070
[69] Muller, Martin Michael; Deserno, Markus; Guven, J., Interface-mediated interactions between particles: a geometrical approach, Phys. Rev. E, 72, 6, (December 2005)
[70] Nowak, Sarah A.; Chou, Tom, Models of dynamic extraction of lipid tethers from cell membranes, Phys. Biol., 7, 2, (2010)
[71] M. Padidar, P. Atzberger, Fluctuating hydrodynamics methods for drift-diffusion dynamics of particles within curved fluid interfaces of spherical shape, 2018 (preprint).
[72] Peskin, Charles S., The immersed boundary method, Acta Numer., 11, 1-39, (July 2002)
[73] Powers, Thomas R., Dynamics of filaments and membranes in a viscous fluid, Rev. Mod. Phys., 82, 1607-1631, (May 2010)
[74] Powers, Thomas R.; Huber, Greg; Goldstein, Raymond E., Fluid-membrane tethers: minimal surfaces and elastic boundary layers, Phys. Rev. E, 65, 4, (March 2002)
[75] Pozrikidis, C., Interfacial dynamics for Stokes flow, J. Comput. Phys., 169, 2, 250-301, (2001) · Zbl 1046.76012
[76] Pressley, A., Elementary differential geometry, (2001), Springer · Zbl 0959.53001
[77] Quemeneur, Francois; Sigurdsson, Jon K.; Renner, Marianne; Atzberger, Paul J.; Bassereau, Patricia; Lacoste, David, Shape matters in protein mobility within membranes, Proc. Natl. Acad. Sci., 111, 14, 5083-5087, (2014)
[78] S. Panzuela, Q. Xiao, R. Delgado-Buscalioni, A. Donev, R.P. Peláez, F. Balboa Usabiaga, Hydrodynamic fluctuations in quasi-two dimensional diffusion, arXiv, 2018.
[79] Rahimi, Mohammad; DeSimone, Antonio; Arroyo, Marino, Curved fluid membranes behave laterally as effective viscoelastic media, Soft Matter, 9, 11033-11045, (2013)
[80] Rangamani, Padmini; Agrawal, Ashutosh; Mandadapu, Kranthi K.; Oster, George; Steigmann, David J., Interaction between surface shape and intra-surface viscous flow on lipid membranes, Biomech. Model. Mechanobiol., 12, 4, 833-845, (Aug 2013)
[81] Rufat, Dzhelil; Mason, Gemma; Mullen, Patrick; Desbrun, Mathieu, The chain collocation method: a spectrally accurate calculus of forms, J. Comput. Phys., 257, Part B, 1352-1372, (January 2014)
[82] Saffman, P. G., Brownian motion in thin sheets of viscous fluid, J. Fluid Mech., 73, 593-602, (1976) · Zbl 0346.76024
[83] Saffman, P. G.; Delbrück, M., Brownian motion in biological membranes, Proc. Natl. Acad. Sci. USA, 72, 3111-3113, (1975)
[84] Sahu, Amaresh; Sauer, Roger A.; Mandadapu, Kranthi K., Irreversible thermodynamics of curved lipid membranes, Phys. Rev. E, 96, (Oct 2017)
[85] Salari, K.; Knupp, P., Code verification by the method of manufactured solutions, (2000), Sandia National Laboratories, Technical Report SAND2000-1444
[86] Sauer, Roger A.; Duong, Thang X.; Mandadapu, Kranthi K.; Steigmann, David J., A stabilized finite element formulation for liquid shells and its application to lipid bilayers, J. Comput. Phys., 330, 436-466, (2017) · Zbl 1378.74066
[87] Saye, Robert I.; Sethian, James A., Multiscale modeling of membrane rearrangement, drainage, and rupture in evolving foams, Science, 340, 6133, 720-724, (2013) · Zbl 1355.74053
[88] Scriven, L. E., Dynamics of a fluid interface equation of motion for Newtonian surface fluids, Chem. Eng. Sci., 12, 2, 98-108, (1960)
[89] Secomb, T. W.; Skalak, R., Surface flow of viscoelastic membranes in viscous fluids, Q. J. Mech. Appl. Math., 35, pt 2, 233-247, (1982) · Zbl 0486.76130
[90] Seki, K.; Komura, S.; Imai, M., Concentration fluctuations in binary fluid membranes, J. Phys. Condens. Matter, 19, 7, (2007)
[91] Shih, T. M., A procedure to debug computer programs, Int. J. Numer. Methods Eng., 21, 6, 1027-1037, (1985) · Zbl 0566.68034
[92] Sigurdsson, Jon Karl; Atzberger, Paul J., Hydrodynamic coupling of particle inclusions embedded in curved lipid bilayer membranes, Soft Matter, 12, 32, 6685-6707, (2016)
[93] Sloan, Ian H.; Womersley, Robert S., Constructive polynomial approximation on the sphere, J. Approx. Theory, 103, 1, 91-118, (2000) · Zbl 0946.41007
[94] Spivak, Micheal, A comprehensive introduction to differential geometry, vol. 1, (1999), Publish or Perish Inc. · Zbl 1213.53001
[95] Steigmann, D. J., Fluid films with curvature elasticity, Arch. Ration. Mech. Anal., 150, 2, 127-152, (Dec 1999)
[96] Stokely, E. M.; Wu, S. Y., Surface parametrization and curvature measurement of arbitrary 3-d objects: five practical methods, IEEE Trans. Pattern Anal. Mach. Intell., 14, 8, 833-840, (1992)
[97] Strang, G., Linear algebra and its applications, (1980), Academic Press, Inc · Zbl 0463.15001
[98] Taubin, G., Estimating the tensor of curvature of a surface from a polyhedral approximation, (Proceedings of IEEE International Conference on Computer Vision, (1995)), 902-907
[99] Thomson, J. J., XXIV. on the structure of the atom: an investigation of the stability and periods of oscillation of a number of corpuscles arranged at equal intervals around the circumference of a circle; with application of the results to the theory of atomic structure, London Edinburgh Dublin Philos. Mag. J. Sci., 7, 39, 237-265, (March 1904)
[100] Vlahovska, Petia M.; Gracia, Ruben Serral, Dynamics of a viscous vesicle in linear flows, Phys. Rev. E, 75, 1, (January 2007)
[101] von Helmholtz, H., Zur theorie der stationaren strome in reibenden flussigkeiten, Verh. Naturh.-Med. Ver. Heidelb., 11, 223, (1868)
[102] Wang, Y.; Sigurdsson, J. K.; Atzberger, P. J., Fluctuating hydrodynamics methods for dynamic coarse-grained implicit-solvent simulations in lammps, SIAM J. Sci. Comput., 38, 5, S62-S77, (2016) · Zbl 1364.65172
[103] Womersley, Robert S., Efficient spherical designs with good geometric properties, (2017)
[104] Womersley, Robert S.; Sloan, Ian H., How good can polynomial interpolation on the sphere be?, Adv. Comput. Math., 14, 3, 195-226, (2001) · Zbl 0980.41003
[105] Woodhouse, Francis G.; Goldstein, Raymond E., Shear-driven circulation patterns in lipid membrane vesicles, J. Fluid Mech., 705, 165-175, (2012) · Zbl 1250.76201
[106] Wu, Chen-Hung; Fai, Thomas G.; Atzberger, Paul J.; Peskin, Charles S., Simulation of osmotic swelling by the stochastic immersed boundary method, SIAM J. Sci. Comput., 37, 4, B660-B688, (2015) · Zbl 1331.82056
[107] Yavari, Arash, On geometric discretization of elasticity, J. Math. Phys., 49, 2, (2008) · Zbl 1153.81451
[108] Yavari, Arash; Marsden, Jerrold E.; Ortiz, Michael, On spatial and material covariant balance laws in elasticity, J. Math. Phys., 47, 4, (2006) · Zbl 1111.74004
[109] Zang Chien, Wei, The intrinsic theory of elastic shells and plates, (1942), University of Toronto, PhD thesis
[110] Zorin, D., Curvature-based energy for simulation and variational modeling, (International Conference on Shape Modeling and Applications 2005 (SMI’ 05), (2005)), 196-204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.