×

zbMATH — the first resource for mathematics

Recent progress on the description of relativistic spin: vector model of spinning particle and rotating body with gravimagnetic moment in general relativity. (English) Zbl 1401.83004
Summary: We review the recent results on development of vector models of spin and apply them to study the influence of spin-field interaction on the trajectory and precession of a spinning particle in external gravitational and electromagnetic fields. The formalism is developed starting from the Lagrangian variational problem, which implies both equations of motion and constraints which should be presented in a model of spinning particle. We present a detailed analysis of the resulting theory and show that it has reasonable properties on both classical and quantum level. We describe a number of applications and show how the vector model clarifies some issues presented in theoretical description of a relativistic spin: (A) one-particle relativistic quantum mechanics with positive energies and its relation with the Dirac equation and with relativistic Zitterbewegung; (B) spin-induced noncommutativity and the problem of covariant formalism; (C) three-dimensional acceleration consistent with coordinate-independence of the speed of light in general relativity and rainbow geometry seen by spinning particle; (D) paradoxical behavior of the Mathisson-Papapetrou-Tulczyjew-Dixon equations of a rotating body in ultrarelativistic limit, and equations with improved behavior.

MSC:
83C10 Equations of motion in general relativity and gravitational theory
81S10 Geometry and quantization, symplectic methods
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Mathisson, M., Neue mechanik materieller systeme, Acta Physica Polonica, 6, 163-200, (1937) · JFM 63.1262.01
[2] Mathisson, M., Republication of: new mechanics of material systems, General Relativity and Gravitation, 42, 4, 1011-1048, (2010) · Zbl 1188.83018
[3] Fock, V. A., On motion of finite masses in general relativity, Soviet Physics—JETP, 9, 4, 375-410, (1939) · JFM 65.1047.04
[4] Papapetrou, A., Spinning test-particles in general relativity. I, Proceedings of the Royal Society A, 209, 1097, 248-258, (1951) · Zbl 0044.22801
[5] Tulczyjew, W., Motion of multipole particles in general relativity theory binaries, Acta Physica Polonica B, 18, 393-409, (1959) · Zbl 0097.42402
[6] Dixon, W. G., A covariant multipole formalism for extended test bodies in general relativity, Il Nuovo Cimento, 34, 2, 317-339, (1964) · Zbl 0124.22201
[7] Dixon, W. G., Classical theory of charged particles with spin and the classical limit of the Dirac equation, Il Nuovo Cimento, 38, 4, 1616-1643, (1965)
[8] Pirani, F. A. E., On the physical significance of the Riemann tensor, Acta Physica Polonica. B, 15, 389-405, (1956) · Zbl 0094.23101
[9] Adler, R. J., The three-fold theoretical basis of the Gravity Probe B gyro precession calculation, Classical and Quantum Gravity, 32, 22, (2015) · Zbl 06537993
[10] Pomeranskii, A. A.; Khriplovich, I. B., Equations of motion of a spinning relativistic particle in external fields, Journal of Experimental and Theoretical Physics, 86, 5, 839-849, (1998)
[11] Will, C. M., The confrontation between general relativity and experiment, Living Reviews in Relativity, 17, 4, (2014) · Zbl 1316.83019
[12] Balakin, A. B.; Popov, V. A., Spin-axion coupling, Physical Review D, 92, 10, (2015)
[13] Frenkel, J., Die elektrodynamik des rotierenden elektrons, Zeitschrift für Physik, 37, 4-5, 243-262, (1926) · JFM 52.0960.06
[14] Frenkel, J., Spinning electrons, Nature, 117, 2949, 653-654, (1926)
[15] Thomas, L. H., The kinematics of an electron with an axis, Philosophical Magazine and Journal of Science, 3, 13, supplement 7, 1, (1927) · JFM 53.0875.07
[16] Corben, H. C., Classical and Quantum Theories of Spinning Particles, (1968), San Francisco, Calif, USA: Holden-Day, San Francisco, Calif, USA
[17] Barut, A. O., Electrodynamics and Classical Theory of Fields and Particles, (1964), New York, NY, USA: MacMillan, New York, NY, USA
[18] Field, J. H.; Picasso, E.; Combley, F., Tests of fundamental physical theories from measurements on free charged leptons, Soviet Physics—Uspekhi, 22, 4, 199-219, (1979)
[19] Miller, J. P.; De Rafael, E.; Roberts, B. L., Muon (g - 2): Experiment and theory, Reports on Progress in Physics, 70, 5, article no. R03, 795-881, (2007)
[20] Hoffstaetter, G. H.; Dumas, H. S.; Ellison, J. A., Adiabatic invariance of spin-orbit motion in accelerators, Physical Review Special Topics - Accelerators and Beams, 9, 1, (2006)
[21] Karlovets, D. V., Electron with orbital angular momentum in a strong laser wave, Physical Review A - Atomic, Molecular, and Optical Physics, 86, 6, (2012)
[22] Dyakonov, M. I.; Perel, V. I., Possibility of orienting electron spins with current, Journal of Experimental and Theoretical Physics Letters, 13, 467, (1971)
[23] Dyakonov, M. I., Magnetoresistance due to edge spin accumulation, Physical Review Letters, 99, 12, (2007)
[24] Deriglazov, A. A., Lagrangian for the Frenkel electron, Physics Letters B, 736, 278-282, (2014) · Zbl 1317.81123
[25] Ramirez, W. G.; Deriglazov, A. A., Lagrangian formulation for Mathisson-Papapetrou-Tulczyjew-Dixon (MPTD) equations, Physical Review D, 92, 12, (2015)
[26] Deriglazov, A. A.; Ramírez, W. G., Hamiltonian action of spinning particle with gravimagnetic moment, Journal of Physics: Conference Series, 670, (2016)
[27] Deriglazov, A. A.; Ramírez, W. G., Ultrarelativistic spinning particle and a rotating body in external fields, Advances in High Energy Physics, 2016, (2016) · Zbl 1366.70030
[28] Deriglazov, A. A.; Ramírez, W. G., Mathisson-Papapetrou-Tulczyjew-Dixon equations in ultra-relativistic regime and gravimagnetic moment, International Journal of Modern Physics D, 26, 6, (2017) · Zbl 1372.83010
[29] Deriglazov, A. A.; Pupasov-Maksimov, A. M., Lagrangian for Frenkel electron and position’s non-commutativity due to spin, European Physical Journal C, 74, 10, article no. 3101, 1-18, (2014) · Zbl 1323.81030
[30] Deriglazov, A. A.; Pupasov-Maksimov, A. M., Frenkel electron on an arbitrary electromagnetic background and magnetic Zitterbewegung, Nuclear Physics B, 885, 1-24, (2014) · Zbl 1323.81030
[31] Deriglazov, A. A.; Pupasov-Maksimov, A. M., Relativistic corrections to the algebra of position variables and spin-orbital interaction, Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 761, 207-212, (2016) · Zbl 1368.81103
[32] Deriglazov, A. A.; Ramírez, W. G., World-line geometry probed by fast spinning particle, Modern Physics Letters A. Particles and Fields, Gravitation, Cosmology, Nuclear Physics, 30, 21, (2015) · Zbl 1325.83007
[33] Ramírez, W. G.; Deriglazov, A. A.; Pupasov-Maksimov, A. M., Frenkel electron and a spinning body in a curved background, Journal of High Energy Physics, 2014, 109, (2014)
[34] Hanson, A. J.; Regge, T., The relativistic spherical top, Annals of Physics, 87, 498-566, (1974)
[35] Fuchs, H., First integrals for the equations of motion for test particles with internal structure, Journal of Mathematical Physics, 32, 9, 2473-2477, (1991) · Zbl 0742.70018
[36] Khriplovich, I. B., Particle with internal angular momentum in a gravitational field, Soviet Physics—JETP, 69, 2, 217-219, (1989)
[37] Trautman, A., Lectures on general relativity, General Relativity and Gravitation, 34, 5, 715-762, (2002) · Zbl 1004.83001
[38] Landau, L. D.; Lifshitz, E. M., The Classical Theory of Fields, (1980), Oxford, UK: Pergamon Press, Oxford, UK · Zbl 0178.28704
[39] Galajinsky, A., Near horizon geometry of extremal black holes and Banados-Silk-West effect, Physical Review D, 88, (2013)
[40] Wei, S.-W.; Gu, B.-M.; Wang, Y.-Q.; Liu, Y.-X., Photon emission of extremal Kerr–Newman black holes, European Physical Journal C, 77, 2, article no. 128, (2017)
[41] Zhang, Y.-P.; Gu, B.-M.; Wei, S.-W.; Yang, J.; Liu, Y.-X., Charged spinning black holes as accelerators of spinning particles, Physical Review D, 94, (2016)
[42] Han, W.-B.; Yang, S.-C., Exotic orbits due to spin-spin coupling around Kerr black holes, International Journal of Modern Physics D, 26, (2017)
[43] Han, W.-B., Fast evolution and waveform generator for extreme-mass-ratio inspirals in equatorial-circular orbits, Classical and Quantum Gravity, 33, 6, (2016) · Zbl 1338.83065
[44] Plyatsko, R.; Fenyk, M., Antigravity: Spin-gravity coupling in action, Physical Review D - Particles, Fields, Gravitation and Cosmology, 94, 4, (2016)
[45] Mikóczi, B., Spin supplementary conditions for spinning compact binaries, Physical Review D, 95, 6, (2017)
[46] Mikóczi, B.; Kocsis, B.; Forgács, P.; Vasúth, M., Parameter estimation for inspiraling eccentric compact binaries including pericenter precession, Physical Review D, 86, 10, (2012)
[47] Fröb, M. B., Quantum gravitational corrections for spinning particles, Journal of High Energy Physics, 2016, article 51, (2016) · Zbl 1390.83028
[48] Fröb, M. B.; Verdaguer, E., Quantum corrections for spinning particles in de Sitter, Journal of Cosmology and Astroparticle Physics, 2017, 4, article 022, (2017)
[49] Armaza, C.; Bañados, M.; Koch, B., Can Schwarzschild black holes be accelerators of spinning massive particles?, Classical and Quantum Gravity, 33, 10, (2016) · Zbl 1338.83095
[50] Armaza, C.; Hojman, S. A.; Koch, B.; Zalaquett, N., On the possibility of non-geodesic motion of massless spinning tops, Classical and Quantum Gravity, 33, 14, (2016) · Zbl 1346.83017
[51] Balakin, A. B.; Popov, V. A., Einstein-aether theory: Dynamics of relativistic particles with spin or polarization in a Gödel-type universe, Journal of Cosmology and Astroparticle Physics, 2017, 4, article 025, (2017)
[52] Wang, K.; Zhang, Y. F.; Wang, Q.; Long, Z. W.; Jing, J., Quantum speed limit for relativistic spin-0 and spin-1 bosons on commutative and noncommutative planes · Zbl 1375.81032
[53] Wang, K.; Zhang, Y.-F.; Wang, Q.; Long, Z.-W.; Jing, J., Quantum speed limit for a relativistic electron in the noncommutative phase space, International Journal of Modern Physics A, 32, 23-24, (2017) · Zbl 1375.81148
[54] Magueijo, J.; Smolin, L., Gravity’s rainbow, Classical and Quantum Gravity, 21, 7, 1725-1736, (2004) · Zbl 1051.83004
[55] Gorji, M. A.; Nozari, K.; Vakili, B., Gravity’s rainbow: A bridge between LQC and DSR, Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 765, 113-119, (2017)
[56] Gorji, M. A.; Nozari, K.; Vakili, B., Polymer quantization versus the Snyder noncommutative space, Classical and Quantum Gravity, 32, 15, (2015) · Zbl 1327.83193
[57] Feng, Z.-W.; Yang, S.-Z.; Li, H.-L.; Zu, X.-T., Thermodynamics and Phase transition of Schwarzschild black hole in Gravity’s Rainbow
[58] Weinberg, S., Lectures on Quantum Mechanics, 1, (2013), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 1264.81010
[59] Berezin, F. A.; Marinov, M. S., Classical spin and Grassmann algebra, Journal of Experimental and Theoretical Physics Letters, 21, 320, (1975)
[60] Berezin, F. A.; Marinov, M. S., Particle spin dynamics as the grassmann variant of classical mechanics, Annals of Physics, 104, 2, 336-362, (1977) · Zbl 0354.70003
[61] Pisarski, R. D., Field theory of paths with a curvature-dependent term, Physical Review D–Particles and Fields, 34, 2, 670-673, (1986) · Zbl 1222.81216
[62] Deriglazov, A.; Nersessian, A., Rigid particle revisited: Extrinsic curvature yields the Dirac equation, Physics Letters, Section A: General, Atomic and Solid State Physics, 378, 18-19, 1224-1227, (2014) · Zbl 1331.81160
[63] Dirac, P. A. M., Generalized Hamiltonian dynamics, Canadian Journal of Mathematics, 2, 129-148, (1950) · Zbl 0036.14104
[64] Dirac, P. A. M., Lectures on Quantum Mechanics, (1964), New York, NY, USA: Yeshiva University, New York, NY, USA · Zbl 0141.44603
[65] Gitman, D. M.; Tyutin, I. V., Quantization of Fields with Constraints, (1990), Berlin, Germany: Springer, Berlin, Germany · Zbl 1113.81300
[66] Deriglazov, A., Classical Mechanics: Hamiltonian and Lagrangian Formalism, (2010), Springer · Zbl 1206.70001
[67] Deriglazov, A. A., Analysis of constrained theories without use of primary constraints, Physics Letters. B. Particle Physics, Nuclear Physics and Cosmology, 626, 1-4, 243-248, (2005) · Zbl 1247.70039
[68] Bañados, M.; Reyes, I., A short review on Noether’s theorems, gauge symmetries and boundary terms, International Journal of Modern Physics D, 25, 10, (2016) · Zbl 1348.70001
[69] Borokhov, V. A.; Tyutin, I. V., Canonical structure of symmetry transformations in classical mechanics: nondegenerate theories, Physics of Atomic Nuclei, 61, 9, 1603-1613, (1998)
[70] Borokhov, V. A.; Tyutin, I. V., Canonical structure of symmetry transformations in classical mechanics: degenerate theories, Physics of Atomic Nuclei, 62, 6, 1137-1149, (1999)
[71] Deriglazov, A. A.; Pupasov-Maksimov, A. M., Geometric constructions underlying relativistic description of spin on the base of non-Grassmann vector-like variable, Symmetry, Integrability and Geometry: Methods and Applications, 10, article 012, (2014) · Zbl 1287.53018
[72] Deriglazov, A. A., A semiclassical description of relativistic spin without the use of Grassmann variables and the Dirac equation, Annals of Physics, 327, 2, 398-406, (2012) · Zbl 1237.81078
[73] Feynman, R. P., Quantum Electrodynamics, (1961), W. A. Benjamin · Zbl 0038.13302
[74] Schrödinger, E., Uber die kraftfreire Bewegung in der relativistischen Quantunmechanik, Sitzungsber. Preuss. Akad. Wiss, 24, 418-428, (1930) · JFM 56.0754.06
[75] Pryce, M. H., The mass-centre in the restricted theory of relativity and its connexion with the quantum theory of elementary particles, Proceedings of the Royal Society. London. Series A. Mathematical, Physical and Engineering Sciences, 195, 62-81, (1948) · Zbl 0032.23605
[76] Foldy, L. L.; Wouthuysen, S. A., On the dirac theory of spin 1/2 particles and its non-relativistic limit, Physical Review, 78, 1, 29-36, (1950) · Zbl 0039.22605
[77] Bauke, H.; Ahrens, S.; H Keitel, C.; Grobe, R., What is the relativistic spin operator?, New Journal of Physics, 16, (2014)
[78] Wen, M.; Bauke, H.; Keitel, C. H., Identifying the Stern-Gerlach force of classical electron dynamics, Scientific Reports, 6, (2016)
[79] Céleri, L. C.; Kiosses, V.; Terno, D. R., Spin and localization of relativistic fermions and uncertainty relations, Physical Review A - Atomic, Molecular, and Optical Physics, 94, 6, (2016)
[80] Fleming, G. N., Nonlocal properties of stable particles, Physical Review, 139, 4B, B963-B968, (1965)
[81] Harms, E.; Lukes-Gerakopoulos, G.; Bernuzzi, S.; Nagar, A., Spinning test body orbiting around a Schwarzschild black hole: Circular dynamics and gravitational-wave fluxes, Physical Review D - Particles, Fields, Gravitation and Cosmology, 94, 10, (2016)
[82] Kunst, D.; Ledvinka, T.; Lukes-Gerakopoulos, G.; Seyrich, J., Comparing Hamiltonians of a spinning test particle for different tetrad fields, Physical Review D - Particles, Fields, Gravitation and Cosmology, 93, 4, (2016)
[83] Wigner, E., On unitary representations of the inhomogeneous Lorentz group, Annals of Mathematics, 40, 1, 149-204, (1939) · JFM 65.1129.01
[84] Bargmann, V.; Wigner, E. P., Group theoretical discussion of relativistic wave equations, Proceedings of the National Academy of Sciences of the United States of America, 34, 211-223, (1948) · Zbl 0030.42306
[85] Weinberg, S., The Quantum Theory of Fields, 1, (1995), Cambridge, UK: Cambridge University Press, Cambridge, UK
[86] Jackson, J. D., Classical Electrodynamics, (1975), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0997.78500
[87] Stepanov, S. S., Thomas precession for spin and for a rod, Physics of Particles and Nuclei, 43, 1, 128-145, (2012)
[88] Nicolaevici, N., Bouncing Dirac particles: compatibility between MIT boundary conditions and Thomas precession, European Physical Journal Plus, 132, 1, article no. 21, (2017)
[89] Weinberg, S., Gravitation and Cosmology, (1972), New York, NY, USA: Willey, New York, NY, USA
[90] Khriplovich, I. B.; Pomeransky, A. A., Gravitational interaction of spinning bodies, center-of-mass coordinate and radiation of compact binary systems, Physics Letters, Section A: General, Atomic and Solid State Physics, 216, 1-5, 7-14, (1996)
[91] Dehghani, M.; Mardaani, M.; Monemzadeh, M.; Abarghouei Nejad, S., First class models from linear and nonlinear second class constraints, Modern Physics Letters A, 30, 38, (2015) · Zbl 1346.81070
[92] Farmany, A.; Hatami, M.; Noorizadeh, H.; Mortazavi, S., New approach for quantization of second class constraint systems, Journal of Applied Sciences, 14, 7, 617-619, (2014)
[93] Staruszkiewicz, A., Fundamental relativistic rotator, Acta Physica Polonica B, Proceedings Supplement, 1, 1, 109-112, (2008)
[94] Hajihashemi, M.; Shirzad, A., A generalized model for the classical relativistic spinning particle, International Journal of Modern Physics A, 31, 7, (2016) · Zbl 1334.70034
[95] Ballesteros, Á.; Gutiérrez-Sagredo, I.; Naranjo, P., On Hamiltonians with position-dependent mass from Kaluza-Klein compactifications, Physics Letters A, 381, 7, 701-706, (2017) · Zbl 1371.83168
[96] Stephon, A.; Robert, S., Axion electron spin quantum mechanics and direct detection
[97] Filgueiras, C.; Silva, E. O.; Oliveira, W.; Moraes, F., The effect of singular potentials on the harmonic oscillator, Annals of Physics, 325, 11, 2529-2541, (2010) · Zbl 1200.81063
[98] Abreu, E. M.; Rizzuti, B. F.; Mendes, A. C.; Freitas, M. A.; Nikoofard, V., Noncommutative and dynamical analysis in a curved phase-space, Jagellonian University. Institute of Physics. Acta Physica Polonica B, 46, 4, 879-903, (2015) · Zbl 1371.58005
[99] Daszkiewicz, M., Generalized twist deformations of Poincaré and Galilei quantum groups, Modern Physics Letters A, 30, 7, (2015) · Zbl 1314.17009
[100] Daszkiewicz, M., Photoelectric effect for twist-deformed space-time, Jagellonian University. Institute of Physics. Acta Physica Polonica B, 47, 5, 1293-1299, (2016) · Zbl 1371.83081
[101] Falomir, H.; Pisani, P. A.; Vega, F.; Cárcamo, D.; Méndez, F.; Loewe, M., On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space, Journal of Physics A: Mathematical and Theoretical, 49, 5, (2016) · Zbl 1358.81133
[102] Pramanik, S.; Ghosh, S.; Pal, P., Electrodynamics of a generalized charged particle in doubly special relativity framework, Annals of Physics, 346, 113-128, (2014) · Zbl 1342.78019
[103] Vasyuta, V. M.; Tkachuk, V. M., Classical electrodynamics in a space with spin noncommutativity of coordinates, Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 761, 462-468, (2016) · Zbl 1371.78028
[104] Das, P.; Ghosh, S., Noncommutative geometry and fluid dynamics, European Physical Journal C, 76, 11, article no. 627, (2016)
[105] Hung, N. Q.; Tuan, D. Q., Explicit phase space transformations and their application in noncommutative quantum mechanics, VNU Journal of Science: Mathematics—Physics, 31, 2, 45-60, (2016)
[106] Chanda, S.; Gibbons, G. W.; Guha, P., Jacobi-Maupertuis metric and Kepler equation, International Journal of Geometric Methods in Modern Physics, 14, 7, (2017) · Zbl 1400.70025
[107] Daszkiewicz, M., The Henon-Heiles system defined on Lie-algebraically deformed Galilei spacetime, Modern Physics Letters A, 32, 13, (2017) · Zbl 1372.37107
[108] Rossi, M. A. C.; Giani, T.; Paris, M. G. A., Probing deformed quantum commutators, Physical Review D - Particles, Fields, Gravitation and Cosmology, 94, 2, (2016)
[109] Ma, K., Constrains of charge-to-mass ratios on noncommutative phase space · Zbl 1375.81145
[110] Ma, K.; Ren, Y.-J.; Wang, Y.-H., Probing noncommutativities of phase space by using persistent charged current and its asymmetry
[111] Monemzadeh, M.; Dehghani, M.; Abarghouei Nejad, S., Gauging the relativistic particle model on the noncommutative plane, International Journal of Theoretical Physics, 56, 6, 1793-1806, (2017) · Zbl 1366.81272
[112] Zhang, Z-S.; Xiao, S.-F.; Xun, D.-M.; Liu, Q.-H., An enlarged canonical quantization scheme and quantization of a free particle on two-dimensional sphere, Communications in Theoretical Physics, 63, 1, article 19, (2015) · Zbl 1305.81097
[113] Xun, D. M.; Liu, Q. H., Can Dirac quantization of constrained systems be fulfilled within the intrinsic geometry?, Annals of Physics, 341, 132-141, (2014) · Zbl 1342.81212
[114] Abreu, E. M. C.; Fernandes, R. L.; Mendes, A. C. R.; Neto, J. A., Faddeev-Jackiw approach of the noncommutative spacetime Podolsky electromagnetic theory
[115] Abreu, E. M. C.; Godinho, C. F. L., Gauge invariant actions for the noncommutative phase-space relativistic particle · Zbl 1378.81049
[116] Rempel, T.; Freidel, L., A bilocal model for the relativistic spinning particle, Physical Review D, 95, 10, (2017)
[117] Newton, T. D.; Wigner, E. P., Localized states for elementary systems, Reviews of Modern Physics, 21, 3, 400-406, (1949) · Zbl 0036.26704
[118] Feynman, R. P.; Gell-Mann, M., Theory of the fermi interaction, Physical Review, 109, 1, 193-198, (1958) · Zbl 0082.44202
[119] Buchbinder, I. L.; Kuzenko, S. M., Ideas and Methods of Supersymmetry and Supergravity or a Walk Through Superspace, (1998), IOP Publishing · Zbl 0924.53043
[120] Conway, J. B., A Course in Functional Analysis, (1990), Springer · Zbl 0706.46003
[121] Rizzuti, B. F.; Abreu, E. M. C.; Alves, P. V., Electron structure through a classical description of the Zitterbewegung, Physical Review D - Particles, Fields, Gravitation and Cosmology, 90, 2, (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.