×

zbMATH — the first resource for mathematics

A smoothed particle Galerkin formulation for extreme material flow analysis in bulk forming applications. (English) Zbl 1359.65293
MSC:
65N75 Probabilistic methods, particle methods, etc. for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Software:
LS-DYNA
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arroyo, M. and Ortiz, M. [2006] ” Local maximum-entropy approximation schemes: A seamless bridge between finite elements and meshfree methods,” Int. J. Numer. Methods Eng.65, 2167-2202. genRefLink(16, ’S0219876216500195BIB001’, ’10.1002%252Fnme.1534’); genRefLink(128, ’S0219876216500195BIB001’, ’000236566800003’); · Zbl 1146.74048
[2] Belytschko, T., Lu, Y. Y. and Gu, L. [1994] ” Element-free Galerkin methods,” Int. J. Numer. Methods Eng.37, 229-256. genRefLink(16, ’S0219876216500195BIB002’, ’10.1002%252Fnme.1620370205’); genRefLink(128, ’S0219876216500195BIB002’, ’A1994MR17400004’);
[3] Belytschko, T., Guo, Y., Liu, W. K. and Xiao, S. P. [2000] ” A unified stability analysis of meshless particle methods,” Int. J. Numer. Methods Eng.48, 1359-1400. genRefLink(16, ’S0219876216500195BIB003’, ’10.1002%252F1097-0207%252820000730%252948%253A9%253C1359%253A%253AAID-NME829%253E3.0.CO%253B2-U’); genRefLink(128, ’S0219876216500195BIB003’, ’000088002400006’); · Zbl 0972.74078
[4] Beissel, S. and Belytschko, T. [1996] ” Nodal integration of the element-free Galerkin method,” Comput. Methods Appl. Mech. Eng.139, 49-74. genRefLink(16, ’S0219876216500195BIB004’, ’10.1016%252FS0045-7825%252896%252901079-1’); genRefLink(128, ’S0219876216500195BIB004’, ’A1996WA55800003’); · Zbl 0918.73329
[5] Bonet, J. and Kilasegaram, S. [2000] ” Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations,” Int. J. Numer. Methods Eng.47, 1189-1214. genRefLink(16, ’S0219876216500195BIB005’, ’10.1002%252F%2528SICI%25291097-0207%252820000228%252947%253A6%253C1189%253A%253AAID-NME830%253E3.0.CO%253B2-I’); genRefLink(128, ’S0219876216500195BIB005’, ’000085083300004’);
[6] Brenner, S. C. and Scott, L. R. [2008] The Mathematical Theory of Finite Element Methods (Springer-Verlag, New York). genRefLink(16, ’S0219876216500195BIB006’, ’10.1007%252F978-0-387-75934-0’); · Zbl 1135.65042
[7] Chen, J. S., Pan, C., Wu, C. T. and Liu, W. K. [1996] ” Reproducing kernel particle methods for large deformation analysis of non-linear structures,” Comput. Methods Appl. Mech. Eng.139, 195-227. genRefLink(16, ’S0219876216500195BIB007’, ’10.1016%252FS0045-7825%252896%252901083-3’); genRefLink(128, ’S0219876216500195BIB007’, ’A1996WA55800007’); · Zbl 0918.73330
[8] Chen, J. S., Wu, C. T., Yoon, S. and You, Y. [2001] ” A stabilized conforming nodal integration for Galerkin meshfree methods,” Int. J. Numer. Methods Eng.50, 435-466. genRefLink(16, ’S0219876216500195BIB008’, ’10.1002%252F1097-0207%252820010120%252950%253A2%253C435%253A%253AAID-NME32%253E3.0.CO%253B2-A’); genRefLink(128, ’S0219876216500195BIB008’, ’000166388600009’); · Zbl 1011.74081
[9] Chen, J. S., Yoon, S. and Wu, C. T. [2002] ” Nonlinear version of stabilized conforming nodal integration for Galerkin meshfree methods,” Int. J. Numer. Methods Eng.53, 2587-2615. genRefLink(16, ’S0219876216500195BIB009’, ’10.1002%252Fnme.338’); genRefLink(128, ’S0219876216500195BIB009’, ’000174504700001’); · Zbl 1098.74732
[10] Chen, J. S., Hillman, M. and Ruter, M. [2013] ” An arbitrary order variationally consistent integration method for Galerkin meshfree methods,” Int. J. Numer. Methods Eng.95, 387-418. genRefLink(16, ’S0219876216500195BIB010’, ’10.1002%252Fnme.4512’); genRefLink(128, ’S0219876216500195BIB010’, ’000321208900002’);
[11] Dyka, C. T. and Ingel, R. P. [1995] ” An approach for tension instability in smoothed particle hydrodynamics,” Comput. Struct.57, 573-580. genRefLink(16, ’S0219876216500195BIB011’, ’10.1016%252F0045-7949%252895%252900059-P’); genRefLink(128, ’S0219876216500195BIB011’, ’A1995RT07700002’);
[12] Guan, P. C., Chi, S. W., Chen, J. S., Slawson, T. R. and Roth, M. J. [2011] ” Semi-Lagrangian reproducing kernel particle method for fragment-impact problems,” Int. J. Impact Eng.38, 1033-1047. genRefLink(16, ’S0219876216500195BIB012’, ’10.1016%252Fj.ijimpeng.2011.08.001’); genRefLink(128, ’S0219876216500195BIB012’, ’000296680700011’);
[13] Hallquist, J. O. [2013] LS-DYNA User’s Manual (Livermore Software Technology Corporation, Livermore, CA).
[14] Krongazu, Y. and Belytschko, T. [1997] ” Consistent pseudo derivatives in meshless methods,” Comput. Methods Appl. Mech. Eng.146, 371-386. genRefLink(16, ’S0219876216500195BIB014’, ’10.1016%252FS0045-7825%252896%252901234-0’); genRefLink(128, ’S0219876216500195BIB014’, ’A1997XE91500010’); · Zbl 0894.73156
[15] Li, S. and Liu, W. K. [2004] Meshfree Particle Method (Springer, Berlin).
[16] Libersky, L. D., Petscheck, A. G., Carney, T. C., Hipp, J. R. and Allahadai, F. A. [1993] ” High strength Lagrangian hydrodynamics,” J. Comput. Phys.109, 67-75. genRefLink(16, ’S0219876216500195BIB016’, ’10.1006%252Fjcph.1993.1199’); genRefLink(128, ’S0219876216500195BIB016’, ’A1993MD72400006’);
[17] Liu, G. R. and Liu, M. B. [2003] Smoothed Particle Hydrodynamics (World Scientific Publishing, Singapore). [Abstract]
[18] Liu, G. R., Dai, K. Y. and Nguyen-Thoi, T. [2007] ” A smoothed finite element method for mechanics problems,” Comput. Mech.39, 859-877. genRefLink(16, ’S0219876216500195BIB018’, ’10.1007%252Fs00466-006-0075-4’); genRefLink(128, ’S0219876216500195BIB018’, ’000244452700015’); · Zbl 1169.74047
[19] Liu, G. R. [2008a] ” A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods,” Int. J. Comput. Methods5, 199-236. [Abstract] genRefLink(128, ’S0219876216500195BIB019’, ’000267111800001’); · Zbl 1222.74044
[20] Liu, G. R. and Zhang, G. Y. [2008b] ” Upper bound solution to elasticity problems: A unique property of the linearly conforming point interpolation method (LS-PIM),” Int. J. Numer. Methods Eng.74, 1128-1161. genRefLink(16, ’S0219876216500195BIB020’, ’10.1002%252Fnme.2204’); genRefLink(128, ’S0219876216500195BIB020’, ’000255697700005’); · Zbl 1158.74532
[21] Liu, G. R., Nguyen-Thoi, T., Nguyen-Xuan, H. and Lam, K. Y. [2009] ” A node-based smoothed finite element method (ns-fem) for upper bound solutions to solid mechanics problems,” Comput. Struct.87, 14-26. genRefLink(16, ’S0219876216500195BIB021’, ’10.1016%252Fj.compstruc.2008.09.003’); genRefLink(128, ’S0219876216500195BIB021’, ’000261973000002’);
[22] Liu, G. R. [2010] Meshfree Methods: Moving Beyond the Finite Element Method (CRC Press, Florida). · Zbl 1205.74003
[23] Liu, W. K., Jun, S. and Zhang, Y. F. [1995] ” Reproducing kernel particle methods,” Int. J. Numer. Methods Fluids20, 1081-1106. genRefLink(16, ’S0219876216500195BIB023’, ’10.1002%252Ffld.1650200824’); genRefLink(128, ’S0219876216500195BIB023’, ’A1995QX11300024’);
[24] Monaghan, J. J. [1982] ” Why particle methods work,” SIAM J. Sci. Stat. Comput.3, 422-433. genRefLink(16, ’S0219876216500195BIB024’, ’10.1137%252F0903027’); genRefLink(128, ’S0219876216500195BIB024’, ’A1982PR49700003’);
[25] Monaghan, J. J. [2000] ” SPH without a tensile instability,” J. Comput. Phys.159, 290-311. genRefLink(16, ’S0219876216500195BIB025’, ’10.1006%252Fjcph.2000.6439’); genRefLink(128, ’S0219876216500195BIB025’, ’000086401000009’);
[26] Nguyen-Thoi, T., Liu, G. R., Lam, K. Y. and Zhang, G. Y. [2008] ” A face-based smoothed finite element method (fs-fem) for 3D linear and geometrically non-linear solid mechanics problems using 4-noded tetrahedral elements,” Int. J. Numer. Methods Eng.78, 324-353. genRefLink(16, ’S0219876216500195BIB026’, ’10.1002%252Fnme.2491’); genRefLink(128, ’S0219876216500195BIB026’, ’000265358000004’);
[27] Park, C. K., Wu, C. T. and Kan, C. D. [2011] ” On the analysis of dispersion property and stable time step in meshfree method using generalized meshfree approximation,” Finite Elem. Anal. Des.47, 683-697. genRefLink(16, ’S0219876216500195BIB027’, ’10.1016%252Fj.finel.2011.02.001’); genRefLink(128, ’S0219876216500195BIB027’, ’000290015100007’);
[28] Parshikov, A. N. and Medin, S. A. [2002] ” Smoothed particle hydrodynamics using interparticle contact algorihm,” J. Comput. Phys.180, 358-382. genRefLink(16, ’S0219876216500195BIB028’, ’10.1006%252Fjcph.2002.7099’); genRefLink(128, ’S0219876216500195BIB028’, ’000176896000018’); · Zbl 1130.76408
[29] Peco, C., Rosolen, A. and Arroyo, M. [2013] ” An adaptive meshfree method for phase-field models of biomembranes. Part II: A Lagrangian approach for membranes in viscous fluids,” J. Comput. Phys.249, 320-336. genRefLink(16, ’S0219876216500195BIB029’, ’10.1016%252Fj.jcp.2013.04.038’); genRefLink(128, ’S0219876216500195BIB029’, ’000320607700019’); · Zbl 06360931
[30] Puso, M. A., Chen, J. S., Zywicz, E. and Elmer, W. [2008] ” Meshfree and finite element nodal integration methods,” Int. J. Numer. Methods Eng.74, 416-446. genRefLink(16, ’S0219876216500195BIB030’, ’10.1002%252Fnme.2181’); genRefLink(128, ’S0219876216500195BIB030’, ’000255074400004’); · Zbl 1159.74456
[31] Rabczuk, T., Belytschko, T. and Xiao, S. P. [2004] ” Stable particle methods based on Lagrangian kernels,” Comput. Methods Appl. Mech. Eng.193, 1035-1063. genRefLink(16, ’S0219876216500195BIB031’, ’10.1016%252Fj.cma.2003.12.005’); genRefLink(128, ’S0219876216500195BIB031’, ’000220555400006’); · Zbl 1060.74672
[32] Randles, P. W. and Libersky, L. D. [2000] ” Recent improvements in SPH modeling of hypervelocity impact,” Int. J. Impact Eng.48, 1445-1462. · Zbl 0963.74079
[33] Sukumar, N. [2004] ” Construction of polygonal interpolants: A maximum entropy approach,” Int. J. Numer. Methods Eng.61, 2159-2181. genRefLink(16, ’S0219876216500195BIB033’, ’10.1002%252Fnme.1193’); genRefLink(128, ’S0219876216500195BIB033’, ’000225450400008’); · Zbl 1073.65505
[34] Swegle, J. W., Hicks, D. L. and Attaway, S. W. [1995] ” Smoothed particle hydrodynamics stabiliy analysis,” J. Comput. Phys.116, 123-134. genRefLink(16, ’S0219876216500195BIB034’, ’10.1006%252Fjcph.1995.1010’); genRefLink(128, ’S0219876216500195BIB034’, ’A1995QD43800010’);
[35] Timoshenko, S. P. and Goodier, J. N. [1970] Theory of Elasticity (McGraw-Hill, New York). · Zbl 0266.73008
[36] Vidal, Y., Bonet, J. and Huerta, A. [2006] ” Stabilized updated Langrangian corrected SPH for explicit dynamic problems,” Int. J. Numer. Methods Eng.69, 2687-2710. genRefLink(16, ’S0219876216500195BIB036’, ’10.1002%252Fnme.1859’); genRefLink(128, ’S0219876216500195BIB036’, ’000245418300002’); · Zbl 1194.74541
[37] Vignjevic, R., Campbell, J. and Libersky, L. D. [2000] ” A treatment of zero-energy modes in the smoothed particle hydrodynamics method,” Comput. Methods Appl. Mech. Eng.184, 67-85. genRefLink(16, ’S0219876216500195BIB037’, ’10.1016%252FS0045-7825%252899%252900441-7’); genRefLink(128, ’S0219876216500195BIB037’, ’000086210300006’); · Zbl 0989.74079
[38] Violeau, D. [2012] Fluid Mechanics and the SPH Method: Theory and Applications (Oxford University Press, Oxford). genRefLink(16, ’S0219876216500195BIB038’, ’10.1093%252Facprof%253Aoso%252F9780199655526.001.0001’); · Zbl 1247.76001
[39] Vishal, M., Sijoy, C. D., Vinayak, M. and Shashank, C. [2012] ” Tensile instability and artificial stresses in impact problems in SPH,” J. Phys. Conf. Ser.377, 012012, doi: [10.1088/1742-6596/377/1/012102] . genRefLink(16, ’S0219876216500195BIB039’, ’10.1088%252F1742-6596%252F377%252F1%252F012012’);
[40] Wang, D. and Chen, J. S. [2004] ” Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation,” Comput. Methods Appl. Mech. Eng.193, 1065-1083. genRefLink(16, ’S0219876216500195BIB040’, ’10.1016%252Fj.cma.2003.12.006’); genRefLink(128, ’S0219876216500195BIB040’, ’000220555400007’); · Zbl 1060.74675
[41] Wang, H. P., Wu, C. T., Guo, Y. and Botkin, M. [2009] ” A coupled meshfree/finite element method for automotive crashworthiness simulations,” Int. J. Impact Eng.36, 1210-1222. genRefLink(16, ’S0219876216500195BIB041’, ’10.1016%252Fj.ijimpeng.2009.03.004’); genRefLink(128, ’S0219876216500195BIB041’, ’000268845900005’);
[42] Wu, C. T., Park, C. K. and Chen, J. S. [2011a] ” A generalized approximation for the meshfree analysis of solids,” Int. J. Numer. Methods Eng.85, 693-722. genRefLink(16, ’S0219876216500195BIB042’, ’10.1002%252Fnme.2991’); genRefLink(128, ’S0219876216500195BIB042’, ’000286852700002’);
[43] Wu, C. T. and Hu, W. [2011b] ” Meshfree-enriched simplex elements with strain smoothing for the finite element analysis of compressible and nearly incompressible solids,” Comput. Methods Appl. Mech. Eng.200, 2991-3010. genRefLink(16, ’S0219876216500195BIB043’, ’10.1016%252Fj.cma.2011.06.013’); genRefLink(128, ’S0219876216500195BIB043’, ’000295753800006’); · Zbl 1230.74201
[44] Wu, C. T., Hu, W. and Chen, J. S. [2012a] ” A meshfree-enriched finite element method for compressible and nearly incompressible elasticity,” Int. J. Numer. Methods Eng.90, 882-914. genRefLink(16, ’S0219876216500195BIB044’, ’10.1002%252Fnme.3349’); genRefLink(128, ’S0219876216500195BIB044’, ’000303049200005’);
[45] Wu, C. T. and Koishi, M. [2012b] ” Three-dimensional meshfree-enriched finite element formulation for micromechanical hyperelastic modeling of particulate rubber composites,” Int. J. Numer. Methods Eng.91, 1137-1157. genRefLink(16, ’S0219876216500195BIB045’, ’10.1002%252Fnme.4306’); genRefLink(128, ’S0219876216500195BIB045’, ’000307951300001’);
[46] Wu, C. T. and Hu, W. [2013a] ” Multi-scale finite element analysis of acoustic waves using global residual-free meshfree enrichments,” Interact. Multiscale Mech.6, 83-105. genRefLink(16, ’S0219876216500195BIB046’, ’10.12989%252Fimm.2013.6.2.083’);
[47] Wu, C. T., Guo, Y. and Askari, E. [2013b] ” Numerical modeling of composite solids using an immersed meshfree Galerkin method,” Compos. B Eng.45, 1397-1413. genRefLink(16, ’S0219876216500195BIB047’, ’10.1016%252Fj.compositesb.2012.09.061’); genRefLink(128, ’S0219876216500195BIB047’, ’000314193200150’);
[48] Wu, C. T. and Wang, H. P. [2013c] ” An enhanced cell-based smoothed finite element method for the analysis of Reissner-Mindlin plate bending problems involving distorted mesh,” Int. J. Numer. Methods Eng.95, 288-312. genRefLink(16, ’S0219876216500195BIB048’, ’10.1002%252Fnme.4506’); genRefLink(128, ’S0219876216500195BIB048’, ’000320943400002’); · Zbl 1352.74452
[49] Wu, C. T., Hu, W. and Liu, G. R. [2014] ” Bubble-enhanced smoothed finite element method: A variational multi-scale approach for volume-constrained problems in two-dimensional linear elasticity,” Int. J. Numer. Methods Eng.100, 374-398. genRefLink(16, ’S0219876216500195BIB049’, ’10.1002%252Fnme.4751’); genRefLink(128, ’S0219876216500195BIB049’, ’000342669900003’);
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.