×

zbMATH — the first resource for mathematics

Developments of Mindlin-Reissner plate elements. (English) Zbl 1394.74099
Summary: Since 1960s, how to develop high-performance plate bending finite elements based on different plate theories has attracted a great deal of attention from finite element researchers, and numerous models have been successfully constructed. Among these elements, the most popular models are usually formulated by two theoretical bases: the Kirchhoff plate theory and the Mindlin-Reissener plate theory. Due to the advantages that only \(C^0\) continuity is required and the effect of transverse shear strain can be included, the latter one seems more rational and has obtained more attention. Through abundant works, different types of Mindlin-Reissener plate models emerged in many literatures and have been applied to solve various engineering problems. However, it also brings FEM users a puzzle of how to choose a “right” one. The main purpose of this paper is to present an overview of the development history of the Mindlin-Reissner plate elements, exhibiting the state-of-art in this research field. At the end of the paper, a promising method for developing “shape-free” plate elements is recommended.

MSC:
74K20 Plates
74S05 Finite element methods applied to problems in solid mechanics
Software:
FEAPpv
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Melosh, R. J., A stiffness matrix for the analysis of thin plates in bending, Journal of the Aerospace Sciences, 28, 1, 34-42, (1961) · Zbl 0100.20902
[2] Clough, R. W.; Tocher, J. L., Finite element stiffness matrices for analysis of plates in bending, Proceedings of Conference on Matrix Methods in Structural Analysis
[3] Zienkiewicz, O. C.; Taylor, R. L., The Finite Element Method for Solid and Structural Mechanics, (2005), Oxford, UK: Elsevier, Oxford, UK · Zbl 1084.74001
[4] Fricker, A. J., A simple method for including shear deformations in thin plate elements, International Journal for Numerical Methods in Engineering, 23, 7, 1355-1366, (1986) · Zbl 0592.73107
[5] Hrabok, M. M.; Hrudey, T. M., A review and catalogue of plate bending finite elements, Computers & Structures, 19, 3, 479-495, (1984)
[6] Mindlin, R. D., Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates, Journal of Applied Mechanics—Transactions of the ASME, 18, 1, 31-38, (1951) · Zbl 0044.40101
[7] Reissner, E., The effect of transverse shear deformation on the bending of elastic plates, Journal of Applied Mechanics-Transactions of the ASME, 12, 2, A69-A77, (1945) · Zbl 0063.06470
[8] Long, Y.-Q.; Cen, S.; Long, Z.-F., Advanced Finite Element Method in Structural Engineering, (2009), Berlin, Germany: Tsinghua University Press, Beijing, China, Springer, Berlin, Germany · Zbl 1168.74005
[9] Arnold, D. N., Discretization by finite elements of a model parameter dependent problem, Numerische Mathematik, 37, 3, 405-421, (1981) · Zbl 0446.73066
[10] Zienkiewicz, O. C.; Taylor, R. L.; Too, J. M., Reduced integration technique in general analysis of plates and shells, International Journal for Numerical Methods in Engineering, 3, 2, 275-290, (1971) · Zbl 0253.73048
[11] Pugh, E. D. L.; Hinton, E.; Zienkiewicz, O. C., A study of quadrilateral plate bending elements with ‘reduced’ integration, International Journal for Numerical Methods in Engineering, 12, 7, 1059-1079, (1978) · Zbl 0377.73065
[12] Hughes, T. J. R.; Cohen, M.; Haroun, M., Reduced and selective integration techniques in the finite element analysis of plates, Nuclear Engineering and Design, 46, 1, 203-222, (1978)
[13] Malkus, D. S.; Hughes, T. J. R., Mixed finite element methods—reduced and selective integration techniques: a unification of concepts, Computer Methods in Applied Mechanics and Engineering, 15, 1, 63-81, (1978) · Zbl 0381.73075
[14] Xenophontos, C. A., Finite element computations for the Reissner-Mindlin plate model, Communications in Numerical Methods in Engineering, 14, 12, 1119-1131, (1998) · Zbl 0927.74073
[15] Arnold, D. N.; Falk, R. S., A uniformly accurate finite element method for the Reissner-Mindlin plate, SIAM Journal on Numerical Analysis, 26, 6, 1276-1290, (1989) · Zbl 0696.73040
[16] Kabir, H. R. H., Shear locking free isoparametric three-node triangular finite element for moderately-thick and thin plates, International Journal for Numerical Methods in Engineering, 35, 3, 503-519, (1992)
[17] Ahmad, S.; Irons, B. M.; Zienkiewicz, O. C., Analysis of thick and thin shell structures by curved finite elements, International Journal for Numerical Methods in Engineering, 2, 3, 419-451, (1970)
[18] Zienkiewicz, O. C.; Hinton, E., Reduced integration, function smoothing and non-conformity in finite element analysis (with special reference to thick plates), Journal of the Franklin Institute, 302, 5-6, 443-461, (1976) · Zbl 0351.73099
[19] Hughes, T. J. R.; Taylor, R. L.; Kanoknukulchai, W., Simple and efficient finite element for plate bending, International Journal for Numerical Methods in Engineering, 11, 10, 1529-1543, (1977) · Zbl 0363.73067
[20] Spilker, R. L.; Munir, N. I., The hybrid-stress model for thin plates, International Journal for Numerical Methods in Engineering, 15, 8, 1239-1260, (1980) · Zbl 0455.73062
[21] Spilker, R. L.; Munir, N. I., A hybrid-stress quadratic serendipity displacement mindlin plate bending element, Computers and Structures, 12, 1, 11-21, (1980) · Zbl 0459.73046
[22] Prathap, G.; Bhashyam, G. R., Reduced integration and the shear-flexible beam element, International Journal for Numerical Methods in Engineering, 18, 2, 195-210, (1982) · Zbl 0473.73084
[23] Averill, R. C.; Reddy, J. N., Behaviour of plate elements based on the first-order shear deformation theory, Engineering Computations, 7, 1, 57-74, (1990)
[24] Pawsey, S. F.; Clough, R. W., Improved numerical integration of thick shell finite elements, International Journal for Numerical Methods in Engineering, 3, 4, 575-586, (1971) · Zbl 0248.73035
[25] Brasile, S., An isostatic assumed stress triangular element for the Reissner-Mindlin plate-bending problem, International Journal for Numerical Methods in Engineering, 74, 6, 971-995, (2008) · Zbl 1158.74480
[26] Hughes, T. J. R.; Cohen, M., The ‘heterosis’ finite element for plate bending, Computers & Structures, 9, 5, 445-450, (1978) · Zbl 0394.73076
[27] Saleeb, A. F.; Chang, T. Y., An efficient quadrilateral element for plate bending analysis, International Journal for Numerical Methods in Engineering, 24, 6, 1123-1155, (1987) · Zbl 0613.73065
[28] Prathap, G.; Somashekar, B. R., Field- and edge-consistency synthesis of a 4-noded quadrilateral plate bending element, International Journal for Numerical Methods in Engineering, 26, 8, 1693-1708, (1988) · Zbl 0663.73045
[29] Batoz, J. L.; Bathe, K. J.; Ho, L. W., A study of 3-node triangular plate bending elements, International Journal for Numerical Methods in Engineering, 15, 12, 1771-1812, (1980) · Zbl 0463.73071
[30] Prathap, G.; Viswanath, S., An optimally integrated 4-node quadrilateral plate bending element, International Journal for Numerical Methods in Engineering, 19, 6, 831-840, (1983) · Zbl 0508.73065
[31] Belytschko, T.; Stolarski, H.; Carpenter, N., A C triangular plate element with one-point quadrature, International Journal for Numerical Methods in Engineering, 20, 5, 787-802, (1984) · Zbl 0528.73069
[32] Spilker, R. L., Invariant 8-node hybrid-stress elements for thin and moderately thick plates, International Journal for Numerical Methods in Engineering, 18, 8, 1153-1178, (1982) · Zbl 0485.73063
[33] Belytschko, T.; Tsay, C. S.; Liu, W. K., A stabilization matrix for the bilinear Mindlin plate element, Computer Methods in Applied Mechanics and Engineering, 29, 3, 313-327, (1981) · Zbl 0474.73091
[34] Belytschko, T.; Tsay, C. S., A stabilization procedure for the quadrilateral plate element with one point quadrature, International Journal for Numerical Methods in Engineering, 19, 3, 405-419, (1983) · Zbl 0502.73058
[35] Belytschko, T.; Ong, J. S. J.; Liu, W. K., A consistent control of spurious singular modes in the 9-node Lagrange element for the laplace and mindlin plate equations, Computer Methods in Applied Mechanics and Engineering, 44, 3, 269-295, (1984) · Zbl 0525.73086
[36] Liu, W. K.; Ong, J. S.; Uras, R. A., Finite element stabilization matrices—a unification approach, Computer Methods in Applied Mechanics and Engineering, 53, 1, 13-46, (1985) · Zbl 0553.73065
[37] Flanagan, D. P.; Belytschko, T., A uniform strain hexahedron and quadrilateral with orthogonal hourglass control, International Journal for Numerical Methods in Engineering, 17, 5, 679-706, (1981) · Zbl 0478.73049
[38] Hughes, T. J. R.; Tezduyar, T. E., Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element, Transactions ASME—Journal of Applied Mechanics, 48, 3, 587-596, (1981) · Zbl 0459.73069
[39] MacNeal, R. H., Derivation of element stiffness matrices by assumed strain distributions, Nuclear Engineering and Design, 70, 1, 3-12, (1982)
[40] Brezzi, F.; Bathe, K.-J.; Fortin, M., Mixed-interpolated elements for Reissner-Mindlin plates, International Journal for Numerical Methods in Engineering, 28, 8, 1787-1801, (1989) · Zbl 0705.73238
[41] Hughes, T. J. R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, (1987), Englewood Cliffs, NJ, USA: Prentice Hall, Englewood Cliffs, NJ, USA · Zbl 0634.73056
[42] Tessler, A.; Hughes, T. J. R., An improved treatment of transverse shear in the mindlin-type four-node quadrilateral element, Computer Methods in Applied Mechanics and Engineering, 39, 3, 311-335, (1983) · Zbl 0501.73072
[43] Tessler, A.; Hughes, T. J. R., A three-node mindlin plate element with improved transverse shear, Computer Methods in Applied Mechanics and Engineering, 50, 1, 71-101, (1985) · Zbl 0562.73069
[44] Sze, K. Y.; Zhu, D.; Chen, D.-P., Quadratic triangular \(C^0\) plate bending element, International Journal for Numerical Methods in Engineering, 40, 5, 937-951, (1997) · Zbl 0886.73072
[45] Sze, K. Y.; Zhu, D., A quadratic assumed natural strain triangular element for plate bending analysis, Communications in Numerical Methods in Engineering, 14, 11, 1013-1025, (1998) · Zbl 0930.74067
[46] Bathe, K. J.; Brezzi, F., On the convergence of a four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation, Proceedings of the 5th Conference on Mathematics of Finite Elements and Applications · Zbl 0589.73068
[47] Bathe, K.-J.; Dvorkin, E. N., A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation, International Journal for Numerical Methods in Engineering, 21, 2, 367-383, (1985) · Zbl 0551.73072
[48] Dvorkin, E. N.; Bathe, K.-J., A continuum mechanics based four-node shell element for general non-linear analysis, Engineering computations, 1, 1, 77-88, (1984)
[49] Bathe, K.-J.; Dvorkin, E. N., A formulation of general shell elements—the use of mixed interpolation of tensorial components, International Journal for Numerical Methods in Engineering, 22, 3, 697-722, (1986) · Zbl 0585.73123
[50] Brezzi, F.; Fortin, M.; Stenberg, R., Error analysis of mixed-interpolated elements for Reissner-Mindlin plates, Mathematical Models & Methods in Applied Sciences, 1, 2, 125-151, (1991) · Zbl 0751.73053
[51] Wu, C. T.; Wang, H. P., An enhanced cell-based smoothed finite element method for the analysis of Reissner-Mindlin plate bending problems involving distorted mesh, International Journal for Numerical Methods in Engineering, 95, 4, 288-312, (2013) · Zbl 1352.74452
[52] Liu, W. K.; Law, E. S.; Lam, D.; Belytschko, T., Resultant-stress degenerated-shell element, Computer Methods in Applied Mechanics and Engineering, 55, 3, 259-300, (1986) · Zbl 0587.73113
[53] Lee, Y.; Lee, P.-S.; Bathe, K.-J., The MITC3+ shell element and its performance, Computers and Structures, 138, 12-23, (2014)
[54] Jeon, H.-M.; Lee, P.-S.; Bathe, K.-J., The MITC3 shell finite element enriched by interpolation covers, Computers and Structures, 134, 128-142, (2014)
[55] Bathe, K. J.; Brezzi, F.; Marini, L. D., The MITC9 shell element in plate bending: mathematical analysis of a simplified case, Computational Mechanics, 47, 6, 617-626, (2011) · Zbl 1307.74063
[56] Lee, P.-S.; Bathe, K.-J., The quadratic MITC plate and MITC shell elements in plate bending, Advances in Engineering Software, 41, 5, 712-728, (2010) · Zbl 1195.74184
[57] Kebari, H., A one point integrated assumed strain 4-node Mindlin plate element, Engineering Computations, 7, 4, 284-290, (1990)
[58] Bletzinger, K.-U.; Bischoff, M.; Ramm, E., A unified approach for shear-locking-free triangular and rectangular shell finite elements, Computers & Structures, 75, 3, 321-334, (2000)
[59] Falsone, G.; Settineri, D., A Kirchhoff-like solution for the Mindlin plate model: a new finite element approach, Mechanics Research Communications, 40, 1-10, (2012)
[60] Nguyen-Thanh, N.; Rabczuk, T.; Nguyen-Xuan, H.; Bordas, S., An alternative alpha finite element method with discrete shear gap technique for analysis of isotropic Mindlin-Reissner plates, Finite Elements in Analysis and Design, 47, 5, 519-535, (2011)
[61] Nguyen-Xuan, H.; Rabczuk, T.; Nguyen-Thanh, N.; Nguyen-Thoi, T.; Bordas, S., A node-based smoothed finite element method with stabilized discrete shear gap technique for analysis of Reissner-Mindlin plates, Computational Mechanics, 46, 5, 679-701, (2010) · Zbl 1260.74029
[62] Cui, X.; Liu, G. R.; Li, G. Y.; Zhang, G.; Zheng, G., Analysis of plates and shells using an edge-based smoothed finite element method, Computational Mechanics, 45, 2-3, 141-156, (2010) · Zbl 1202.74165
[63] Le, C. V., A stabilized discrete shear gap finite element for adaptive limit analysis of Mindlin-Reissner plates, International Journal for Numerical Methods in Engineering, 96, 4, 231-246, (2013) · Zbl 1352.74164
[64] Batoz, J. L.; Bentahar, M. B., Evaluation of a new quadrilateral thin plate bending element, International Journal for Numerical Methods in Engineering, 18, 11, 1655-1677, (1982) · Zbl 0489.73080
[65] Batoz, J. L., An explicit formulation for an efficient triangular plate-bending element, International Journal for Numerical Methods in Engineering, 18, 7, 1077-1089, (1982) · Zbl 0487.73087
[66] Zienkiewicz, O. C.; Taylor, R. L.; Papadopoulos, P.; Oñate, E., Plate bending elements with discrete constraints: new triangular elements, Computers & Structures, 35, 4, 505-522, (1990) · Zbl 0729.73227
[67] Aalto, J., From Kirchhoff to Mindlin plate elements, Communications in Applied Numerical Methods, 4, 2, 231-241, (1988) · Zbl 0633.73079
[68] Batoz, J.-L.; Lardeur, P., A discrete shear triangular nine D.O.F. element for the analysis of thick to very thin plates, International Journal for Numerical Methods in Engineering, 28, 3, 533-560, (1989) · Zbl 0675.73042
[69] Batoz, J.-L.; Katili, I., On a simple triangular reissner/mindlin plate element based on incompatible modes and discrete constraints, International Journal for Numerical Methods in Engineering, 35, 8, 1603-1632, (1992) · Zbl 0775.73236
[70] Cai, Y. C.; Tian, L. G.; Atluri, S. N., A simple locking-free discrete shear triangular plate element, Computer Modeling in Engineering & Sciences, 77, 3-4, 221-238, (2011) · Zbl 1356.74193
[71] Lardeur, P., Développement et Évaluation de Deux Nouveaux Éléments Finis de Plaques et Coques Composites Avec Influence Du Cisaillement Transversal, (1990), Compiègne, France: UTC, Compiègne, France
[72] Batoz, J. L.; Dhatt, G., Modélisation des Structures Par Éléments Finis: Solides Élastiques, (1990), Paris, France: Université Laval, Paris, France
[73] Katili, I., New discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields. Part II. An extended DKQ element for thick-plate bending analysis, International Journal for Numerical Methods in Engineering, 36, 11, 1885-1908, (1993) · Zbl 0775.73264
[74] Katili, I., New discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields. Part I: an extended DKT element for thick-plate bending analysis, International Journal for Numerical Methods in Engineering, 36, 11, 1859-1883, (1993) · Zbl 0775.73263
[75] Zeinkiewicz, O. C.; Xu, Z. N.; Zeng, L. F.; Samuelsson, A.; Wiberg, N.-E., Linked interpolation for Ressiner-Mindlin plate element: part I—a simple quadrilateral, International Journal for Numerical Methods in Engineering, 36, 18, 3043-3056, (1993) · Zbl 0780.73090
[76] Taylor, R. L.; Auricchio, F., Linked interpolation for Reissner-Mindlin plate elements: part II—a simple triangle, International Journal for Numerical Methods in Engineering, 36, 18, 3057-3066, (1993) · Zbl 0781.73071
[77] Auricchio, F.; Taylor, R. L., A shear deformable plate element with an exact thin limit, Computer Methods in Applied Mechanics and Engineering, 118, 3-4, 393-412, (1994) · Zbl 0849.73063
[78] Zhongnian, X., A thick-thin triangular plate element, International Journal for Numerical Methods in Engineering, 33, 5, 963-973, (1992)
[79] Durán, R. G.; Liberman, E., On the convergence of a triangular mixed finite element method for Reissner-Mindlin plates, Mathematical Models and Methods in Applied Sciences, 6, 3, 339-352, (1996) · Zbl 0853.73064
[80] Ribarić, D.; Jelenić, G., Higher-order linked interpolation in quadrilateral thick plate finite elements, Finite Elements in Analysis and Design, 51, 67-80, (2012)
[81] Ribarić, D.; Jelenić, G., Distortion-immune nine-node displacement-based quadrilateral thick plate finite elements that satisfy constant-bending patch test, International Journal for Numerical Methods in Engineering, 98, 7, 492-517, (2014) · Zbl 1352.74167
[82] Auricchio, F.; Taylor, R. L., A triangular thick plate finite element with an exact thin limit, Finite Elements in Analysis and Design, 19, 1-2, 57-68, (1995) · Zbl 0875.73290
[83] Papadopoulos, P.; Taylor, R. L., A triangular element based on Reissner-Mindlin plate theory, International Journal for Numerical Methods in Engineering, 30, 5, 1029-1049, (1990) · Zbl 0728.73073
[84] Xu, Z.; Zienkiewicz, O. C.; Zeng, L. F., Linked interpolation for Reissner-Mindlin plate elements: Part III. An alternative quadrilateral, International Journal for Numerical Methods in Engineering, 37, 9, 1437-1443, (1994) · Zbl 0805.73068
[85] Auricchio, F.; Lovadina, C., Analysis of kinematic linked interpolation methods for Reissner-Mindlin plate problems, Computer Methods in Applied Mechanics and Engineering, 190, 18-19, 2465-2482, (2001) · Zbl 0994.74065
[86] Lovadina, C., Analysis of a mixed finite element method for the Reissner-Mindlin plate problems, Computer Methods in Applied Mechanics and Engineering, 163, 1–4, 71-85, (1998) · Zbl 0962.74065
[87] Lyly, M., On the connection between some linear triangular Reissner-Mindlin plate bending elements, Numerische Mathematik, 85, 1, 77-107, (2000) · Zbl 0956.74061
[88] Lee, S. W.; Pian, T. H. H., Improvement of plate and shell finite elements by mixed formulations, AIAA Journal, 16, 1, 29-34, (1978) · Zbl 0368.73067
[89] Lee, S. W.; Zhang, J. C., A 6-node finite element for plate bending, International Journal for Numerical Methods in Engineering, 21, 1, 131-143, (1985) · Zbl 0551.73073
[90] Lee, S. W.; Wong, S. C., Mixed formulation finite elements for Mindlin theory plate bending, International Journal for Numerical Methods in Engineering, 18, 9, 1297-1311, (1982) · Zbl 0486.73069
[91] Pian, T. H. H.; Sumihara, K., Hybrid SemiLoof elements for plates and shells based upon a modified Hu-Washizu principle, Computers & Structures, 19, 1-2, 165-173, (1984) · Zbl 0549.73069
[92] Weissman, S. L.; Taylor, R. L., Resultant fields for mixed plate bending elements, Computer Methods in Applied Mechanics and Engineering, 79, 3, 321-355, (1990) · Zbl 0743.73031
[93] Cook, R. D., Two hybrid elements for analysis of thick, thin and sandwich plates, International Journal for Numerical Methods in Engineering, 5, 2, 277-288, (1972) · Zbl 0242.73037
[94] Robinson, J.; Haggenmacher, G. W., LORA-an accurate four node stress plate bending element, International Journal for Numerical Methods in Engineering, 14, 2, 296-306, (1979) · Zbl 0394.73001
[95] Saleeb, A. F.; Chang, T. Y.; Yingyeunyong, S., A mixed formulation of C-linear triangular plate/shell element-the role of edge shear constraints, International Journal for Numerical Methods in Engineering, 26, 5, 1101-1128, (1988) · Zbl 0634.73070
[96] Gellert, M., A new method for derivation of locking-free plate bending finite elements via mixed hybrid formulation, International Journal for Numerical Methods in Engineering, 26, 5, 1185-1200, (1988) · Zbl 0634.73065
[97] Zienkiewicz, O. C.; Lefebvre, D., A robust triangular plate bending element of the Reissner–Mindlin type, International Journal for Numerical Methods in Engineering, 26, 5, 1169-1184, (1988) · Zbl 0634.73064
[98] Pinsky, P. M.; Jasti, R. V., A mixed finite element formulation for Reissner-Mindlin plates based on the use of bubble functions, International Journal for Numerical Methods in Engineering, 28, 7, 1677-1702, (1989) · Zbl 0717.73069
[99] Ayad, R.; Dhatt, G.; Batoz, J. L., A new hybrid-mixed variational approach for Reissner-Mindlin plates. The MISP model, International Journal for Numerical Methods in Engineering, 42, 7, 1149-1179, (1998) · Zbl 0912.73051
[100] de Miranda, S.; Ubertini, F., A simple hybrid stress element for shear deformable plates, International Journal for Numerical Methods in Engineering, 65, 6, 808-833, (2006) · Zbl 1113.74066
[101] Duan, H.-Y.; Liang, G.-P., Analysis of some stabilized low-order mixed finite element methods for Reissner-Mindlin plates, Computer Methods in Applied Mechanics and Engineering, 191, 3–5, 157-179, (2001) · Zbl 1041.74067
[102] Shi, G. Y.; Tong, P., Assumed stress C quadrilateral triangular plate elements by interrelated edge displacements, International Journal for Numerical Methods in Engineering, 39, 6, 1041-1051, (1996) · Zbl 0865.73066
[103] Bathe, K. J., Finite Element Procedures, (1996), Upper Saddle River, NJ, USA: Prentice Hall, Upper Saddle River, NJ, USA
[104] Aminpour, M. A., Direct formulation of a hybrid 4-node shell element with drilling degrees of freedom, International Journal for Numerical Methods in Engineering, 35, 5, 997-1013, (1992) · Zbl 0775.73233
[105] Jirousek, J.; Wroblewski, A.; Szybinski, B., New 12 DOF quadrilateral element for analysis of thick and thin plates, International Journal for Numerical Methods in Engineering, 38, 15, 2619-2638, (1995) · Zbl 0854.73067
[106] Jin, F. S.; Qin, Q. H., A variational principle and hybrid Trefftz finite element for the analysis of Reissner plates, Computers & Structures, 56, 4, 697-701, (1995) · Zbl 0900.73769
[107] Dong, Y. F.; Defreitas, J. A. T., A quadrilateral hybrid stress element for mindlin plates based on incompatible displacements, International Journal for Numerical Methods in Engineering, 37, 2, 279-296, (1994) · Zbl 0796.73059
[108] Pian, T. H. H.; Chen, D. P., Alternative ways for formulation of hybrid stress elements, International Journal for Numerical Methods in Engineering, 18, 11, 1679-1684, (1982) · Zbl 0497.73080
[109] Shi, G.; Voyiadjis, G. Z., Efficient and accurate four-node quadrilateral \(C^0\) plate bending element based on assumed strain fields, International Journal for Numerical Methods in Engineering, 32, 5, 1041-1055, (1991)
[110] Shi, G.; Voyiadjis, G. Z., Simple and efficient shear flexible two-node arch/beam and four-node cylindrical shell/plate finite elements, International Journal for Numerical Methods in Engineering, 31, 4, 759-776, (1991) · Zbl 0825.73802
[111] Gruttmann, F.; Wagner, W., A stabilized one-point integrated quadrilateral Reissner-Mindlin plate element, International Journal for Numerical Methods in Engineering, 61, 13, 2273-2295, (2004) · Zbl 1075.74646
[112] Noor, A. K.; Andersen, C. M., Mixed models and reduced selective integration displacement models for non-linear shell analysis, International Journal for Numerical Methods In Engineering, 18, 10, 1429-1454, (1982) · Zbl 0526.73088
[113] Ayad, R.; Rigolot, A., An improved four-node hybrid-mixed element based upon Mindlin’s plate theory, International Journal for Numerical Methods in Engineering, 55, 6, 705-731, (2002) · Zbl 1058.74633
[114] Ayad, R.; Rigolot, A.; Talbi, N., An improved three-node hybrid-mixed element for Mindlin/Reissner plates, International Journal for Numerical Methods in Engineering, 51, 8, 919-942, (2001) · Zbl 1047.74050
[115] Pereira, E. M. B. R.; Freitas, J. A. T., Numerical implementation of a hybrid-mixed finite element model for Reissner-Mindlin plates, Computers & Structures, 74, 3, 323-334, (2000)
[116] Pereira, E. M. B. R.; Freitas, J. A. T., A hybrid-mixed finite element model based on Legendre polynomials for Reissner-Mindlin plates, Computer Methods in Applied Mechanics and Engineering, 136, 1-2, 111-126, (1996) · Zbl 0891.73069
[117] Simo, J. C.; Rifai, M. S., A class of mixed assumed strain methods and the method of incompatible modes, International Journal for Numerical Methods in Engineering, 29, 8, 1595-1638, (1990) · Zbl 0724.73222
[118] Choo, Y. S.; Choi, N.; Lee, B. C., A new hybrid-Trefftz triangular and quadrilateral plate elements, Applied Mathematical Modelling, 34, 1, 14-23, (2010) · Zbl 1185.90048
[119] Yuan, K.-Y.; Huang, Y.-S.; Pian, T. H. H., New strategy for assumed stresses for 4-node hybrid stress membrane element, International Journal for Numerical Methods in Engineering, 36, 10, 1747-1763, (1993) · Zbl 0772.73086
[120] Arnold, D. N.; Brezzi, F.; Marini, L. D., A family of discontinuous Galerkin finite elements for the Reissner-Mindlin plate, Journal of Scientific Computing, 22-23, 1, 25-45, (2005) · Zbl 1065.74068
[121] Brezzi, F.; Marini, L. D., A nonconforming element for the Reissner-Mindlin plate, Computers and Structures, 81, 8-11, 515-522, (2003)
[122] Chinosi, C.; Lovadina, C.; Marini, L. D., Nonconforming locking-free finite elements for Reissner-Mindlin plates, Computer Methods in Applied Mechanics and Engineering, 195, 25–28, 3448-3460, (2006) · Zbl 1119.74047
[123] Lovadina, C., A low-order nonconforming finite element for Reissner-Mindlin plates, SIAM Journal on Numerical Analysis, 42, 6, 2688-2705, (2005) · Zbl 1080.74048
[124] Arnold, D. N.; Brezzi, F.; Falk, R. S.; Marini, L. D., Locking-free Reissner-Mindlin elements without reduced integration, Computer Methods in Applied Mechanics and Engineering, 196, 37–40, 3660-3671, (2007) · Zbl 1173.74396
[125] Boesing, P. R.; Madureira, A. L.; Mozolevski, I., A new interior penalty discontinuous Galerkin method for the Reissner-Mindlin model, Mathematical Models and Methods in Applied Sciences, 20, 8, 1343-1361, (2010) · Zbl 1200.65091
[126] Hansbo, P.; Larson, M. G., Locking free quadrilateral continuous/discontinuous finite element methods for the Reissner-Mindlin plate, Computer Methods in Applied Mechanics and Engineering, 269, 381-393, (2014) · Zbl 1296.74113
[127] Hansbo, P.; Heintz, D.; Larson, M. G., A finite element method with discontinuous rotations for the Mindlin-Reissner plate model, Computer Methods in Applied Mechanics and Engineering, 200, 5–8, 638-648, (2011) · Zbl 1225.74090
[128] Cen, S.; Long, Y.-Q.; Yao, Z.-H.; Chiew, S.-P., Application of the quadrilateral area co-ordinate method: a new element for Mindlin-Reissner plate, International Journal for Numerical Methods in Engineering, 66, 1, 1-45, (2006) · Zbl 1110.74845
[129] Long, Y. Q.; Li, J. X.; Long, Z. F.; Cen, S., Area co-ordinates used in quadrilateral elements, Communications in Numerical Methods in Engineering, 15, 8, 533-545, (1999) · Zbl 0959.74068
[130] Long, Z. F.; Li, J. X.; Cen, S.; Long, Y. Q., Some basic formulae for area co-ordinates in quadrilateral elements, Communications in Numerical Methods in Engineering, 15, 12, 841-852, (1999) · Zbl 0965.74070
[131] Ibrahimbegović, A., Plate quadrilateral finite element with incompatible modes, Communications in Applied Numerical Methods, 8, 8, 497-504, (1992) · Zbl 0757.73056
[132] Ibrahimbegović, A., Quadrilateral finite elements for analysis of thick and thin plates, Computer Methods in Applied Mechanics and Engineering, 110, 3-4, 195-209, (1993) · Zbl 0845.73070
[133] Soh, A. K.; Long, Z. F.; Cen, S., A new nine dof triangular element for analysis of thick and thin plates, Computational Mechanics, 24, 5, 408-417, (1999) · Zbl 0977.74068
[134] Soh, A.-K.; Cen, S.; Long, Y.-Q.; Long, Z.-F., A new twelve DOF quadrilateral element for analysis of thick and thin plates, European Journal of Mechanics. A. Solids, 20, 2, 299-326, (2001) · Zbl 1047.74068
[135] Wang, C. S.; Hu, P.; Xia, Y., A 4-node quasi-conforming Reissner-Mindlin shell element by using Timoshenko’s beam function, Finite Elements in Analysis and Design, 61, 12-22, (2012)
[136] Zhang, H. X.; Kuang, J. S., Eight-node Reissner-Mindlin plate element based on boundary interpolation using Timoshenko beam function, International Journal for Numerical Methods in Engineering, 69, 7, 1345-1373, (2007) · Zbl 1194.74490
[137] Liu, G. R.; Dai, K. Y.; Nguyen, T. T., A smoothed finite element method for mechanics problems, Computational Mechanics, 39, 6, 859-877, (2007) · Zbl 1169.74047
[138] Liu, G. R., A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods, International Journal of Computational Methods, 5, 2, 199-236, (2008) · Zbl 1222.74044
[139] Chen, J. S.; Wu, C. T.; Yoon, S.; You, Y., A stabilized conforming nodal integration for Galerkin mesh-free methods, International Journal for Numerical Methods in Engineering, 50, 2, 435-466, (2001) · Zbl 1011.74081
[140] Nguyen-Thoi, T.; Phung-Van, P.; Luong-Van, H.; Nguyen-Van, H.; Nguyen-Xuan, H., A cell-based smoothed three-node Mindlin plate element (CS-MIN3) for static and free vibration analyses of plates, Computational Mechanics, 51, 1, 65-81, (2013) · Zbl 1294.74064
[141] Nguyen-Xuan, H.; Rabczuk, T.; Bordas, S.; Debongnie, J. F., A smoothed finite element method for plate analysis, Computer Methods in Applied Mechanics and Engineering, 197, 13–16, 1184-1203, (2008) · Zbl 1159.74434
[142] Shin, C. M.; Lee, B. C., Development of a strain-smoothed three-node triangular flat shell element with drilling degrees of freedom, Finite Elements in Analysis and Design, 86, 71-80, (2014)
[143] Nguyen-Xuan, H.; Liu, G. R.; Thai-Hoang, C.; Nguyen-Thoi, T., An edge-based smoothed finite element method (ES-FEM) with stabilized discrete shear gap technique for analysis of Reissner-Mindlin plates, Computer Methods in Applied Mechanics and Engineering, 199, 9–12, 471-489, (2010) · Zbl 1227.74083
[144] Liu, G. R.; Zhang, G. Y., Upper bound solution to elasticity problems: a unique property of the linearly conforming point interpolation method (LC-PIM), International Journal for Numerical Methods in Engineering, 74, 7, 1128-1161, (2008) · Zbl 1158.74532
[145] Liu, G. R.; Nguyen-Thoi, T.; Lam, K. Y., A novel alpha finite element method (αFEM) for exact solution to mechanics problems using triangular and tetrahedral elements, Computer Methods in Applied Mechanics and Engineering, 197, 45–48, 3883-3897, (2008) · Zbl 1194.74433
[146] Liu, G. R.; Nguyen-Xuan, H.; Nguyen-Thoi, T.; Xu, X., A novel Galerkin-like weakform and a superconvergent alpha finite element method (SαFEM) for mechanics problems using triangular meshes, Journal of Computational Physics, 228, 11, 4055-4087, (2009) · Zbl 1273.74542
[147] Liu, G. R.; Nguyen-Thoi, T.; Lam, K. Y., A novel FEM by scaling the gradient of strains with factor α (αFEM), Computational Mechanics, 43, 3, 369-391, (2009) · Zbl 1162.74469
[148] Yu-Qiu, L.; Ke-Gui, X., Generalized conforming element for bending and buckling analysis of plates, Finite Elements in Analysis and Design, 5, 1, 15-30, (1989) · Zbl 0679.73029
[149] Chen, Y. L.; Cen, S.; Yao, Z. H.; Long, Y. Q.; Long, Z. F., Development of triangular flat-shell element using a new thin-thick plate bending element based on semiLoof constrains, Structural Engineering and Mechanics, 15, 1, 83-114, (2003)
[150] Cai, L.; Rong, T.; Chen, D., Generalized mixed variational methods for Reissner plate and its applications, Computational Mechanics, 30, 1, 29-37, (2002) · Zbl 1146.74357
[151] Rong, T.-Y., Generalized mixed variational principles and new FEM models in solid mechanics, International Journal of Solids and Structures, 24, 11, 1131-1140, (1988) · Zbl 0686.73050
[152] Bergan, P. G.; Hanssen, L., A new approach for deriving ‘good’ finite elements, The Mathematics of Finite Elements and Applications, 2, 483-498, (1975)
[153] Bergan, P. G.; Wang, X., Quadrilateral plate bending elements with shear deformations, Computers and Structures, 19, 1-2, 25-34, (1984) · Zbl 0549.73071
[154] Bergan, P. G.; Nygard, M. K., Finite elements with increased freedom in choosing shape functions, International Journal for Numerical Methods in Engineering, 20, 4, 643-663, (1984) · Zbl 0579.73077
[155] Liu, I. W.; Kerh, T.; Lin, C. C., A conforming quadrilateral plate bending element with shear deformations, Computers & Structures, 56, 1, 93-100, (1995) · Zbl 0900.73764
[156] Felippa, C. A.; Bergan, P. G., A triangular bending element based on an energy-orthogonal free formulation, Computer Methods in Applied Mechanics and Engineering, 61, 2, 129-160, (1987) · Zbl 0596.73048
[157] Bergan, P. G., Finite elements based on energy orthogonal functions, International Journal for Numerical Methods in Engineering, 15, 10, 1541-1555, (1980) · Zbl 0438.73063
[158] Hinton, E.; Huang, H. C., A family of quadrilateral Mindlin plate elements with substitute shear strain fields, Computers and Structures, 23, 3, 409-431, (1986)
[159] Roufaeil, O. L., A new four-node quadrilateral plate bending element, Computers & Structures, 54, 5, 871-879, (1995) · Zbl 0870.73073
[160] Holzer, S.; Rank, E.; Werner, H., An implementation of the hp-version of the finite element method for Reissner-Mindlin plate problems, International Journal for Numerical Methods in Engineering, 30, 3, 459-471, (1990) · Zbl 0729.73226
[161] Cheung, Y. K.; Chen, W. J., Refined nine-parameter triangular thin plate bending element by using refined direct stiffness method, International Journal for Numerical Methods in Engineering, 38, 2, 283-298, (1995) · Zbl 0823.73062
[162] Chen, W. J.; Cheung, Y. K., Refined quadrilateral element based on Mindlin/Reissner plate theory, International Journal for Numerical Methods in Engineering, 47, 1–3, 605-627, (2000) · Zbl 0970.74072
[163] Wanji, C.; Cheung, Y. K., Refined 9-Dof triangular Mindlin plate elements, International Journal for Numerical Methods in Engineering, 51, 11, 1259-1282, (2001) · Zbl 1065.74606
[164] Castellazzi, G.; Krysl, P., Displacement-based finite elements with nodal integration for Reissner-Mindlin plates, International Journal for Numerical Methods in Engineering, 80, 2, 135-162, (2009) · Zbl 1176.74177
[165] Choi, C.-K.; Kim, S.-H., Coupled use of reduced integration and non-conforming modes in quadratic Mindlin plate element, International Journal for Numerical Methods in Engineering, 28, 8, 1909-1928, (1989) · Zbl 0711.73240
[166] Hinton, E.; Bićanić, N., A comparison of lagrangian and serendipity mindlin plate elements for free vibration analysis, Computers and Structures, 10, 3, 483-493, (1979) · Zbl 0417.73060
[167] Castellazzi, G.; Krysl, P., A nine-node displacement-based finite element for Reissner-Mindlin plates based on an improved formulation of the NIPE approach, Finite Elements in Analysis and Design, 58, 31-43, (2012)
[168] Zhuang, X. Y.; Huang, R. Q.; Zhu, H. H.; Askes, H.; Mathisen, K., A new and simple locking-free triangular thick plate element using independent shear degrees of freedom, Finite Elements in Analysis and Design, 75, 1-7, (2013) · Zbl 1368.74038
[169] Carstensen, C.; Xie, X. P.; Yu, G. Z.; Zhou, T. X., A priori and a posteriori analysis for a locking-free low order quadrilateral hybrid finite element for Reissner-Mindlin plates, Computer Methods in Applied Mechanics and Engineering, 200, 9–12, 1161-1175, (2011) · Zbl 1225.74081
[170] Maunder, E. A. W.; de Almeida, J. P. M., A triangular hybrid equilibrium plate element of general degree, International Journal for Numerical Methods in Engineering, 63, 3, 315-350, (2005) · Zbl 1140.74555
[171] Hu, B.; Wang, Z.; Xu, Y., Combined hybrid method applied in the Reissner-Mindlin plate model, Finite Elements in Analysis and Design, 46, 5, 428-437, (2010)
[172] Wang, Z.; Hu, B., Research of combined hybrid method applied in the Reissner-Mindlin plate model, Applied Mathematics and Computation, 182, 1, 49-66, (2006) · Zbl 1103.74054
[173] Ming, P.; Shi, Z.-C., Analysis of some low order quadrilateral Reissner-Mindlin plate elements, Mathematics of Computation, 75, 255, 1043-1065, (2006) · Zbl 1088.74045
[174] Duan, H.-Y.; Liang, G.-P., Mixed and nonconforming finite element approximations of Reissner-Mindlin plates, Computer Methods in Applied Mechanics and Engineering, 192, 49-50, 5265-5281, (2003) · Zbl 1054.74051
[175] Pontaza, J. P.; Reddy, J. N., Mixed plate bending elements based on least-squares formulation, International Journal for Numerical Methods in Engineering, 60, 5, 891-922, (2004) · Zbl 1060.74635
[176] Zhou, T. X., The partial projection method in the finite element discretization of the Reissner-Mindlin plate model, Journal of Computational Mathematics, 13, 2, 172-191, (1995) · Zbl 0826.73064
[177] Arnold, D. N.; Brezzi, F., Some new elements for the Reissner-Mindlin plate model, Boundary Value Problems for Partial Differential Equations and Applications, 287-292, (1993) · Zbl 0817.73058
[178] Chinosi, C.; Lovadina, C., Numerical analysis of some mixed finite element methods for Reissner-Mindlin plates, Computational Mechanics, 16, 1, 36-44, (1995) · Zbl 0824.73066
[179] Polit, O.; Touratier, M.; Lory, P., A new 8-node quadrilateral shear-bending plate finite element, International Journal for Numerical Methods in Engineering, 37, 3, 387-411, (1994) · Zbl 0788.73072
[180] Dhananjaya, H. R.; Nagabhushanam, J.; Pandey, P. C.; Jumaat, M. Z., New twelve node serendipity quadrilateral plate bending element based on Mindlin-Reissner theory using integrated force method, Structural Engineering and Mechanics, 36, 5, 625-642, (2010)
[181] Dhananjaya, H. R.; Pandey, P. C.; Nagabhushanam, J., New eight node serendipity quadrilateral plate bending element for thin and moderately thick plates using integrated force method, Structural Engineering and Mechanics, 33, 4, 485-502, (2009)
[182] Hu, J.; Shi, Z.-C., Error analysis of quadrilateral Wilson element for Reissner-Mindlin plate, Computer Methods in Applied Mechanics and Engineering, 197, 6–8, 464-475, (2008) · Zbl 1169.74609
[183] Lyly, M.; Stenberg, R.; Vihinen, T., A stable bilinear element for the Reissner-Mindlin plate model, Computer Methods in Applied Mechanics and Engineering, 110, 3-4, 343-357, (1993) · Zbl 0846.73065
[184] Kikuchi, F.; Ishii, K., Improved 4-node quadrilateral plate bending element of the Reissner-Mindlin type, Computational Mechanics, 23, 3, 240-249, (1999) · Zbl 0962.74062
[185] Sohn, D.; Im, S., Variable-node plate and shell elements with assumed natural strain and smoothed integration methods for nonmatching meshes, Computational Mechanics, 51, 6, 927-948, (2013) · Zbl 1343.74048
[186] Choi, C. K.; Park, Y. M., Conforming and nonconforming transition plate bending elements for an adaptive h-refinement, Thin-Walled Structures, 28, 1, 1-20, (1997)
[187] Choi, C.-K.; Park, Y.-M., Transition plate-bending elements for compatible mesh gradation, Journal of Engineering Mechanics, 118, 3, 462-480, (1992)
[188] Sofuoglu, H.; Gedikli, H., A refined 5-node plate bending element based on Reissner-Mindlin theory, Communications in Numerical Methods in Engineering, 23, 5, 385-403, (2007) · Zbl 1116.74066
[189] Li, S., On the micromechanics theory of Reissner-Mindlin plates, Acta Mechanica, 142, 1, 47-99, (2000) · Zbl 0993.74034
[190] Eijo, A.; Oñate, E.; Oller, S., A four-noded quadrilateral element for composite laminated plates/shells using the refined zigzag theory, International Journal for Numerical Methods in Engineering, 95, 8, 631-660, (2013) · Zbl 1352.74017
[191] Ma, H. M.; Gao, X.-L.; Reddy, J. N., A non-classical Mindlin plate model based on a modified couple stress theory, Acta Mechanica, 220, 1–4, 217-235, (2011) · Zbl 1237.74133
[192] Ma, H. M.; Gao, X.-L.; Reddy, J. N., A microstructure-dependent Timoshenko beam model based on a modified couple stress theory, Journal of the Mechanics and Physics of Solids, 56, 12, 3379-3391, (2008) · Zbl 1171.74367
[193] Park, S. K.; Gao, X.-L., Bernoulli-Euler beam model based on a modified couple stress theory, Journal of Micromechanics and Microengineering, 16, 11, article 2355, (2006)
[194] Cen, S.; Shang, Y.; Li, C.-F.; Li, H.-G., Hybrid displacement function element method: a simple hybrid-Trefftz stress element method for analysis of Mindlin-Reissner plate, International Journal for Numerical Methods in Engineering, 98, 3, 203-234, (2014) · Zbl 1352.74335
[195] Hu, H. C., Variational Principles of Theory of Elasticity with Applications, (1984), New York, NY, USA: Science Press, Beijing, China; Gordan and Breach Science, New York, NY, USA
[196] Shang, Y.; Cen, S.; Li, C.-F.; Huang, J.-B., An effective hybrid displacement function element method for solving the edge effect of Mindlin-Reissner plate, International Journal for Numerical Methods in Engineering, (2015) · Zbl 1352.74169
[197] Shang, Y.; Cen, S.; Li, C.-F.; Fu, X.-R., Two generalized conforming quadrilateral Mindlin-Reissner plate elements based on the displacement function, Finite Elements in Analysis and Design, 99, 24-28, (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.