Bergounioux, Maïtine; Bourdin, Loïc Pontryagin maximum principle for general Caputo fractional optimal control problems with Bolza cost and terminal constraints. (English) Zbl 1447.49035 ESAIM, Control Optim. Calc. Var. 26, Paper No. 35, 38 p. (2020). MSC: 49K15 26A33 34A08 49J15 49K40 93C15 PDF BibTeX XML Cite \textit{M. Bergounioux} and \textit{L. Bourdin}, ESAIM, Control Optim. Calc. Var. 26, Paper No. 35, 38 p. (2020; Zbl 1447.49035) Full Text: DOI
Skandari, Mohammad Hadi Noori; Habibli, Marzieh; Nazemi, Alireza A direct method based on the Clenshaw-Curtis formula for fractional optimal control problems. (English) Zbl 1439.49054 Math. Control Relat. Fields 10, No. 1, 171-187 (2020). MSC: 49M25 49M37 26A33 90C30 PDF BibTeX XML Cite \textit{M. H. N. Skandari} et al., Math. Control Relat. Fields 10, No. 1, 171--187 (2020; Zbl 1439.49054) Full Text: DOI
Hallaji, Majid; Ahmadieh Khanesar, Mojtaba; Dideban, Abbas; Vahidyan Kamyad, Ali Optimal control of non-smooth fractional-order systems based on extended Caputo derivative. (English) Zbl 1437.26009 Nonlinear Dyn. 96, No. 1, 57-74 (2019). MSC: 26A33 34A08 49N99 PDF BibTeX XML Cite \textit{M. Hallaji} et al., Nonlinear Dyn. 96, No. 1, 57--74 (2019; Zbl 1437.26009) Full Text: DOI
Marzban, H. R.; Malakoutikhah, F. Solution of delay fractional optimal control problems using a hybrid of block-pulse functions and orthonormal Taylor polynomials. (English) Zbl 1451.49027 J. Franklin Inst. 356, No. 15, 8182-8215 (2019). MSC: 49K21 PDF BibTeX XML Cite \textit{H. R. Marzban} and \textit{F. Malakoutikhah}, J. Franklin Inst. 356, No. 15, 8182--8215 (2019; Zbl 1451.49027) Full Text: DOI
Matychyn, Ivan; Onyshchenko, Viktoriia Optimal control of linear systems of arbitrary fractional order. (English) Zbl 1439.49037 Fract. Calc. Appl. Anal. 22, No. 1, 170-179 (2019). Reviewer: Roman Šimon Hilscher (Brno) MSC: 49K15 49N05 26A33 34A08 PDF BibTeX XML Cite \textit{I. Matychyn} and \textit{V. Onyshchenko}, Fract. Calc. Appl. Anal. 22, No. 1, 170--179 (2019; Zbl 1439.49037) Full Text: DOI
Mohammadi, Fakhrodin; Hassani, Hossein Numerical solution of two-dimensional variable-order fractional optimal control problem by generalized polynomial basis. (English) Zbl 1409.49029 J. Optim. Theory Appl. 180, No. 2, 536-555 (2019). MSC: 49M30 35Q35 49J20 41A58 49J21 PDF BibTeX XML Cite \textit{F. Mohammadi} and \textit{H. Hassani}, J. Optim. Theory Appl. 180, No. 2, 536--555 (2019; Zbl 1409.49029) Full Text: DOI
Zeid, Samaneh Soradi; Effati, Sohrab; Kamyad, Ali Vahidian Approximation methods for solving fractional optimal control problems. (English) Zbl 1438.49045 Comput. Appl. Math. 37, No. 1, Suppl., 158-182 (2018). MSC: 49M05 49M25 65K99 PDF BibTeX XML Cite \textit{S. S. Zeid} et al., Comput. Appl. Math. 37, No. 1, 158--182 (2018; Zbl 1438.49045) Full Text: DOI
Hallaji, Majid; Dideban, Abbas; Khanesar, Mojtaba Ahmadieh; vahidyan kamyad, Ali Optimal synchronization of non-smooth fractional order chaotic systems with uncertainty based on extension of a numerical approach in fractional optimal control problems. (English) Zbl 1416.93084 Chaos Solitons Fractals 115, 325-340 (2018). MSC: 93C15 93C23 34K35 34K60 PDF BibTeX XML Cite \textit{M. Hallaji} et al., Chaos Solitons Fractals 115, 325--340 (2018; Zbl 1416.93084) Full Text: DOI
Rabiei, Kobra; Ordokhani, Yadollah; Babolian, Esmaeil Fractional-order Legendre functions and their application to solve fractional optimal control of systems described by integro-differential equations. (English) Zbl 1404.49021 Acta Appl. Math. 158, No. 1, 87-106 (2018). MSC: 49M30 49K21 90C32 PDF BibTeX XML Cite \textit{K. Rabiei} et al., Acta Appl. Math. 158, No. 1, 87--106 (2018; Zbl 1404.49021) Full Text: DOI
Jajarmi, Amin; Hajipour, Mojtaba; Mohammadzadeh, Ehsan; Baleanu, Dumitru A new approach for the nonlinear fractional optimal control problems with external persistent disturbances. (English) Zbl 1390.49016 J. Franklin Inst. 355, No. 9, 3938-3967 (2018). MSC: 49K15 34A08 93C73 49K40 PDF BibTeX XML Cite \textit{A. Jajarmi} et al., J. Franklin Inst. 355, No. 9, 3938--3967 (2018; Zbl 1390.49016) Full Text: DOI
Matychyn, Ivan; Onyshchenko, Viktoriia On time-optimal control of fractional-order systems. (English) Zbl 1392.49031 J. Comput. Appl. Math. 339, 245-257 (2018). Reviewer: Treanta Savin (Bucharest) MSC: 49K15 49N05 33E12 PDF BibTeX XML Cite \textit{I. Matychyn} and \textit{V. Onyshchenko}, J. Comput. Appl. Math. 339, 245--257 (2018; Zbl 1392.49031) Full Text: DOI
Agarwal, Ravi P.; Baleanu, Dumitru; Nieto, Juan J.; Torres, Delfim F. M.; Zhou, Yong A survey on fuzzy fractional differential and optimal control nonlocal evolution equations. (English) Zbl 1388.34005 J. Comput. Appl. Math. 339, 3-29 (2018). MSC: 34A07 34A08 49J15 93D15 PDF BibTeX XML Cite \textit{R. P. Agarwal} et al., J. Comput. Appl. Math. 339, 3--29 (2018; Zbl 1388.34005) Full Text: DOI
Rabiei, Kobra; Ordokhani, Yadollah; Babolian, Esmaeil Numerical solution of 1D and 2D fractional optimal control of system via Bernoulli polynomials. (English) Zbl 1383.65067 Int. J. Appl. Comput. Math. 4, No. 1, Paper No. 7, 17 p. (2018). MSC: 65K10 49J15 49M37 26A33 PDF BibTeX XML Cite \textit{K. Rabiei} et al., Int. J. Appl. Comput. Math. 4, No. 1, Paper No. 7, 17 p. (2018; Zbl 1383.65067) Full Text: DOI
Dehghan, Reza State parametrization method based on shifted Legendre polynomials for solving fractional optimal control problems. (English) Zbl 1381.49016 Int. J. Appl. Comput. Math. 4, No. 1, Paper No. 37, 21 p. (2018). MSC: 49K15 90C31 90C26 42C05 65E05 PDF BibTeX XML Cite \textit{R. Dehghan}, Int. J. Appl. Comput. Math. 4, No. 1, Paper No. 37, 21 p. (2018; Zbl 1381.49016) Full Text: DOI
Rakhshan, Seyed Ali; Effati, Sohrab; Kamyad, Ali Vahidian Comments on “A discrete method to solve fractional optimal control problems”. (English) Zbl 1384.49021 Nonlinear Dyn. 87, No. 3, 2067-2071 (2017). MSC: 49K15 34A08 65L10 PDF BibTeX XML Cite \textit{S. A. Rakhshan} et al., Nonlinear Dyn. 87, No. 3, 2067--2071 (2017; Zbl 1384.49021) Full Text: DOI
Baleanu, Dumitru; Jajarmi, Amin; Hajipour, Mojtaba A new formulation of the fractional optimal control problems involving Mittag-Leffler nonsingular kernel. (English) Zbl 1383.49030 J. Optim. Theory Appl. 175, No. 3, 718-737 (2017). MSC: 49K15 49J40 49M30 26A33 33E12 PDF BibTeX XML Cite \textit{D. Baleanu} et al., J. Optim. Theory Appl. 175, No. 3, 718--737 (2017; Zbl 1383.49030) Full Text: DOI
Zeid, Samaneh Soradi; Kamyad, Ali Vahidian; Effati, Sohrab; Rakhshan, Seyed Ali; Hosseinpour, Soleiman Numerical solutions for solving a class of fractional optimal control problems via fixed-point approach. (English) Zbl 1381.49031 S\(\vec{\text{e}}\)MA J. 74, No. 4, 585-603 (2017). MSC: 49M25 49L99 65L03 34A08 47H10 PDF BibTeX XML Cite \textit{S. S. Zeid} et al., S\(\vec{\text{e}}\)MA J. 74, No. 4, 585--603 (2017; Zbl 1381.49031) Full Text: DOI
Rabiei, Kobra; Ordokhani, Yadollah; Babolian, Esmaeil The Boubaker polynomials and their application to solve fractional optimal control problems. (English) Zbl 1380.49058 Nonlinear Dyn. 88, No. 2, 1013-1026 (2017). MSC: 49N90 PDF BibTeX XML Cite \textit{K. Rabiei} et al., Nonlinear Dyn. 88, No. 2, 1013--1026 (2017; Zbl 1380.49058) Full Text: DOI
Shah, Syed Muslim; Samar, Raza; Khan, Noor M.; Raja, Muhammad Asif Zahoor Design of fractional-order variants of complex LMS and NLMS algorithms for adaptive channel equalization. (English) Zbl 1375.93130 Nonlinear Dyn. 88, No. 2, 839-858 (2017). MSC: 93E11 93C40 26A33 PDF BibTeX XML Cite \textit{S. M. Shah} et al., Nonlinear Dyn. 88, No. 2, 839--858 (2017; Zbl 1375.93130) Full Text: DOI
Jahanshahi, Salman; Torres, Delfim F. M. A simple accurate method for solving fractional variational and optimal control problems. (English) Zbl 1377.49016 J. Optim. Theory Appl. 174, No. 1, 156-175 (2017). MSC: 49K05 26A33 49M30 PDF BibTeX XML Cite \textit{S. Jahanshahi} and \textit{D. F. M. Torres}, J. Optim. Theory Appl. 174, No. 1, 156--175 (2017; Zbl 1377.49016) Full Text: DOI
Ejlali, Nastaran; Hosseini, Seyed Mohammad A pseudospectral method for fractional optimal control problems. (English) Zbl 1377.49019 J. Optim. Theory Appl. 174, No. 1, 83-107 (2017). MSC: 49K15 34A08 93B60 49M37 PDF BibTeX XML Cite \textit{N. Ejlali} and \textit{S. M. Hosseini}, J. Optim. Theory Appl. 174, No. 1, 83--107 (2017; Zbl 1377.49019) Full Text: DOI
Lotfi, Ali A combination of variational and penalty methods for solving a class of fractional optimal control problems. (English) Zbl 1378.49032 J. Optim. Theory Appl. 174, No. 1, 65-82 (2017). MSC: 49M30 49J40 49M25 34A08 PDF BibTeX XML Cite \textit{A. Lotfi}, J. Optim. Theory Appl. 174, No. 1, 65--82 (2017; Zbl 1378.49032) Full Text: DOI
Bhrawy, A. H.; Ezz-Eldien, S. S.; Doha, E. H.; Abdelkawy, M. A.; Baleanu, D. Solving fractional optimal control problems within a Chebyshev-Legendre operational technique. (English) Zbl 1370.49027 Int. J. Control 90, No. 6, 1230-1244 (2017). MSC: 49M30 34A08 65M70 33C45 PDF BibTeX XML Cite \textit{A. H. Bhrawy} et al., Int. J. Control 90, No. 6, 1230--1244 (2017; Zbl 1370.49027) Full Text: DOI
Bhrawy, A. H.; Ezz-Eldien, S. S. A new Legendre operational technique for delay fractional optimal control problems. (English) Zbl 1377.49032 Calcolo 53, No. 4, 521-543 (2016). MSC: 49M30 49M25 PDF BibTeX XML Cite \textit{A. H. Bhrawy} and \textit{S. S. Ezz-Eldien}, Calcolo 53, No. 4, 521--543 (2016; Zbl 1377.49032) Full Text: DOI
Nemati, Ali; Yousefi, Sohrabali; Soltanian, Fahimeh; Ardabili, J. Saffar An efficient numerical solution of fractional optimal control problems by using the Ritz method and Bernstein operational matrix. (English) Zbl 1359.65100 Asian J. Control 18, No. 6, 2272-2282 (2016). Reviewer: Hans Benker (Merseburg) MSC: 65K10 34H05 49J15 49M15 PDF BibTeX XML Cite \textit{A. Nemati} et al., Asian J. Control 18, No. 6, 2272--2282 (2016; Zbl 1359.65100) Full Text: DOI
Aslan, İsmail Exact solutions for fractional DDEs via auxiliary equation method coupled with the fractional complex transform. (English) Zbl 1358.34006 Math. Methods Appl. Sci. 39, No. 18, 5619-5625 (2016). MSC: 34A08 34A33 34A05 PDF BibTeX XML Cite \textit{İ. Aslan}, Math. Methods Appl. Sci. 39, No. 18, 5619--5625 (2016; Zbl 1358.34006) Full Text: DOI
Frederico, G. S. F.; Lazo, M. J. Fractional Noether’s theorem with classical and Caputo derivatives: constants of motion for non-conservative systems. (English) Zbl 1355.49015 Nonlinear Dyn. 85, No. 2, 839-851 (2016). MSC: 49K05 26A33 34A08 70H33 PDF BibTeX XML Cite \textit{G. S. F. Frederico} and \textit{M. J. Lazo}, Nonlinear Dyn. 85, No. 2, 839--851 (2016; Zbl 1355.49015) Full Text: DOI
Kamocki, Rafał; Majewski, Marek Fractional linear control systems with Caputo derivative and their optimization. (English) Zbl 1333.93124 Optim. Control Appl. Methods 36, No. 6, 953-967 (2015). MSC: 93C15 34A08 93C05 49J15 49K15 PDF BibTeX XML Cite \textit{R. Kamocki} and \textit{M. Majewski}, Optim. Control Appl. Methods 36, No. 6, 953--967 (2015; Zbl 1333.93124) Full Text: DOI