Pennington, Nathan Global solutions to the generalized Leray-\(\alpha\) system with non-\(L^2(\mathbb{R}^n)\) initial data. (English) Zbl 1440.76024 J. Dyn. Differ. Equations 32, No. 3, 1203-1217 (2020). MSC: 76D05 35A02 35Q35 PDF BibTeX XML Cite \textit{N. Pennington}, J. Dyn. Differ. Equations 32, No. 3, 1203--1217 (2020; Zbl 1440.76024) Full Text: DOI
Li, Shihu; Xie, Yingchao Averaging principle for stochastic 3D fractional Leray-\(\alpha\) model with a fast oscillation. (English) Zbl 1447.60109 Stochastic Anal. Appl. 38, No. 2, 248-276 (2020). MSC: 60H15 70K70 35Q30 35R60 PDF BibTeX XML Cite \textit{S. Li} and \textit{Y. Xie}, Stochastic Anal. Appl. 38, No. 2, 248--276 (2020; Zbl 1447.60109) Full Text: DOI
Li, Shihu; Liu, Wei; Xie, Yingchao Ergodicity of 3D Leray-\(\alpha\) model with fractional dissipation and degenerate stochastic forcing. (English) Zbl 1447.60108 Infin. Dimens. Anal. Quantum Probab. Relat. Top. 22, No. 1, Article ID 1950002, 20 p. (2019). MSC: 60H15 37A25 35R11 35Q30 PDF BibTeX XML Cite \textit{S. Li} et al., Infin. Dimens. Anal. Quantum Probab. Relat. Top. 22, No. 1, Article ID 1950002, 20 p. (2019; Zbl 1447.60108) Full Text: DOI