Bouw, Irene I.; Ejder, Özlem; Karemaker, Valentijn Dynamical Belyi maps and arboreal Galois groups. (English) Zbl 07333828 Manuscr. Math. 165, No. 1-2, 1-34 (2021). MSC: 11G32 12F10 37P05 37P15 PDF BibTeX XML Cite \textit{I. I. Bouw} et al., Manuscr. Math. 165, No. 1--2, 1--34 (2021; Zbl 07333828) Full Text: DOI
Demark, David; Hindes, Wade; Jones, Rafe; Misplon, Moses; Stoll, Michael; Stoneman, Michael Eventually stable quadratic polynomials over \(\mathbb{Q}\). (English) Zbl 1446.37100 New York J. Math. 26, 526-561 (2020). Reviewer: Artūras Dubickas (Vilnius) MSC: 37P15 11R09 37P05 12E05 11R32 11R45 PDF BibTeX XML Cite \textit{D. Demark} et al., New York J. Math. 26, 526--561 (2020; Zbl 1446.37100) Full Text: Link
Yamamoto, Kota On iterated extensions of number fields arising from quadratic polynomial maps. (English) Zbl 07152993 J. Number Theory 209, 289-311 (2020). MSC: 11R23 11R29 11R32 PDF BibTeX XML Cite \textit{K. Yamamoto}, J. Number Theory 209, 289--311 (2020; Zbl 07152993) Full Text: DOI
Juul, Jamie; Krieger, Holly; Looper, Nicole; Manes, Michelle; Thompson, Bianca; Walton, Laura Arboreal representations for rational maps with few critical points. (English) Zbl 1436.11135 Balakrishnan, Jennifer S. (ed.) et al., Research directions in number theory. Women in numbers IV. Proceedings of the women in numbers, WIN4 workshop. Banff International Research Station, Banff, Alberta, Canada, August 14–18, 2017. Cham: Springer. Assoc. Women Math. Ser. 19, 133-151 (2019). MSC: 11R32 37P05 11F80 37P25 11R45 PDF BibTeX XML Cite \textit{J. Juul} et al., Assoc. Women Math. Ser. 19, 133--151 (2019; Zbl 1436.11135) Full Text: DOI
Benedetto, Robert; Ingram, Patrick; Jones, Rafe; Manes, Michelle; Silverman, Joseph H.; Tucker, Thomas J. Current trends and open problems in arithmetic dynamics. (English) Zbl 07124524 Bull. Am. Math. Soc., New Ser. 56, No. 4, 611-685 (2019). MSC: 37P05 37P15 37P20 37P25 37P30 37P45 37P55 PDF BibTeX XML Cite \textit{R. Benedetto} et al., Bull. Am. Math. Soc., New Ser. 56, No. 4, 611--685 (2019; Zbl 07124524) Full Text: DOI
Bridy, Andrew; Tucker, Thomas J. Finite index theorems for iterated Galois groups of cubic polynomials. (English) Zbl 07051737 Math. Ann. 373, No. 1-2, 37-72 (2019). MSC: 37P15 11G50 11R32 14G25 37P05 37P30 PDF BibTeX XML Cite \textit{A. Bridy} and \textit{T. J. Tucker}, Math. Ann. 373, No. 1--2, 37--72 (2019; Zbl 07051737) Full Text: DOI arXiv
Juul, J. Iterates of generic polynomials and generic rational functions. (English) Zbl 1442.37120 Trans. Am. Math. Soc. 371, No. 2, 809-831 (2019). MSC: 37P05 11G35 14G25 11R45 12F10 12E05 PDF BibTeX XML Cite \textit{J. Juul}, Trans. Am. Math. Soc. 371, No. 2, 809--831 (2019; Zbl 1442.37120) Full Text: DOI
Hindes, Wade Average Zsigmondy sets, dynamical Galois groups, and the Kodaira-Spencer map. (English) Zbl 1394.37130 Trans. Am. Math. Soc. 370, No. 9, 6391-6410 (2018). Reviewer: Franco Vivaldi (London) MSC: 37P15 11R32 11B37 14G05 PDF BibTeX XML Cite \textit{W. Hindes}, Trans. Am. Math. Soc. 370, No. 9, 6391--6410 (2018; Zbl 1394.37130) Full Text: DOI arXiv
Ferraguti, Andrea The set of stable primes for polynomial sequences with large Galois group. (English) Zbl 1442.11150 Proc. Am. Math. Soc. 146, No. 7, 2773-2784 (2018). MSC: 11R32 11R45 20E08 PDF BibTeX XML Cite \textit{A. Ferraguti}, Proc. Am. Math. Soc. 146, No. 7, 2773--2784 (2018; Zbl 1442.11150) Full Text: DOI arXiv
Hindes, Wade Galois groups of some iterated polynomials over cyclotomic extensions. (English) Zbl 1441.11280 Arch. Math. 110, No. 2, 109-113 (2018). MSC: 11R32 37P15 PDF BibTeX XML Cite \textit{W. Hindes}, Arch. Math. 110, No. 2, 109--113 (2018; Zbl 1441.11280) Full Text: DOI arXiv
Benedetto, Robert L.; Faber, Xander; Hutz, Benjamin; Juul, Jamie; Yasufuku, Yu A large arboreal Galois representation for a cubic postcritically finite polynomial. (English) Zbl 1427.11118 Res. Number Theory 3, Paper No. 29, 21 p. (2017). MSC: 11R32 05C25 11R09 PDF BibTeX XML Cite \textit{R. L. Benedetto} et al., Res. Number Theory 3, Paper No. 29, 21 p. (2017; Zbl 1427.11118) Full Text: DOI
Jones, Rafe; Levy, Alon Eventually stable rational functions. (English) Zbl 1391.37072 Int. J. Number Theory 13, No. 9, 2299-2318 (2017). MSC: 37P05 37P15 11R32 12E05 37P25 11S82 PDF BibTeX XML Cite \textit{R. Jones} and \textit{A. Levy}, Int. J. Number Theory 13, No. 9, 2299--2318 (2017; Zbl 1391.37072) Full Text: DOI arXiv
Swaminathan, Ashvin A. On arboreal Galois representations of rational functions. (English) Zbl 1387.11081 J. Algebra 448, 104-126 (2016). Reviewer: Nuria Vila (Barcelona) MSC: 11R32 12F10 37P15 11F80 PDF BibTeX XML Cite \textit{A. A. Swaminathan}, J. Algebra 448, 104--126 (2016; Zbl 1387.11081) Full Text: DOI