×

zbMATH — the first resource for mathematics

Evolving possibilistic fuzzy modelling. (English) Zbl 07192011
Summary: This paper suggests an evolving possibilistic approach for fuzzy modelling of time-varying processes. The approach is based on an extension of the well-known possibilistic fuzzy c-means (FCM) clustering and functional fuzzy rule-based modelling. Evolving possibilistic fuzzy modelling (ePFM) employs memberships and typicalities to recursively cluster data, and uses participatory learning to adapt the model structure as a stream data is input. The idea of possibilistic clustering plays a key role when the data are noisy and with outliers due to the relaxation of the restriction on membership degrees to add up unity in FCM clustering algorithm. To show the usefulness of ePFM, the approach is addressed for system identification using Box & Jenkins gas furnace data as well as time series forecasting considering the chaotic Mackey-Glass series and data produced by a synthetic time-varying process with parameter drift. The results show that ePFM is a potential candidate for nonlinear time-varying systems modelling, with comparable or better performance than alternative approaches, mainly when noise and outliers affect the data available.
MSC:
03E72 Theory of fuzzy sets, etc.
62A86 Fuzzy analysis in statistics
93C42 Fuzzy control/observation systems
Software:
DENFIS
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Shaker A, Hüllermeier E. IBLStreams: a system for instance-based classification and regression on data streams. Evol Syst. 2012;3(4):235-249. doi: 10.1007/s12530-012-9059-0[Crossref], [Google Scholar]
[2] Kasabov N. Foundations of neural networks, fuzzy systems, and knowledge-engineering. Cambridge (MA): MIT Press; 1996. [Google Scholar] · Zbl 0925.68356
[3] Ljung L. System identification: theory for the user. Englewood Cliffs (NJ): Prentice-Hall; 1988. [Google Scholar] · Zbl 0615.93004
[4] Angelov PP, Filev DP. An approach to online identification of Takagi-Sugeno fuzzy models. IEEE T Syst Man Cyb - Part B. 2004;34(1):484-498. doi: 10.1109/TSMCB.2003.817053[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[5] Angelov P, Filev D. Simpl_eTS: a simplified method for learning evolving Takagi-Sugeno fuzzy models. IEEE International Conference on Fuzzy Systems, Reno (NV); 2005. p. 1068-1073. [Google Scholar]
[6] Angelov P, Zhou X. Evolving fuzzy systems from data streams in real-time. International Symposium on Evolving Fuzzy Systems, Ambleside, Lake District, United Kingdom; 2006. p. 29-35. [Google Scholar]
[7] Angelov P. Evolving Takagi-Sugeno fuzzy systems from data streams (eTS+). In: Angelov P, Filev D, Kasabov N, editors. Evolving intelligent systems: methodology and applications. Hoboken (NJ): Wiley & IEEE Press; 2010. p. 21-50. [Google Scholar]
[8] Maciel L, Gomide F, Ballini R. Enhanced evolving participatory learning fuzzy modeling: an application for asset returns volatility forecasting. Evol Syst. 2014;5(1):75-88. doi: 10.1007/s12530-013-9099-0[Crossref], [Google Scholar]
[9] Lima E, Hell H, Ballini R, et al. Evolving fuzzy modeling using participatory learning. Hoboken: John Wiley & Sons, Ltd; 2010. [Crossref], [Google Scholar]
[10] Dovžan D, Škrjanc I. Recursive fuzzy c-means clustering for recursive fuzzy identification of time-varying processes. ISA T. 2011;50(2):159-169. doi: 10.1016/j.isatra.2011.01.004[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[11] Dovžan D, Škrjanc I. Recursive clustering based on a Gustafson-Kessel algorithm. Evol Syst. 2011;2(1):15-24. doi: 10.1007/s12530-010-9025-7[Crossref], [Google Scholar]
[12] Dovžan D, Loga V, Škrjanc I. Solving the sales prediction with fuzzy evolving models. WCCI 2012 IEEE World Congress on Computational Intelligence; June, Brisbane, Australia; 2012. p. 10-15. [Google Scholar]
[13] Kasabov NK, Song Q. DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Trans Fuzzy Syst. 2002;10(2):144-154. doi: 10.1109/91.995117[Crossref], [Web of Science ®], [Google Scholar]
[14] Lughofer ED. FLEXFIS: a robust incremental learning approach for evolving Takagi-Sugeno fuzzy models. IEEE Trans Fuzzy Syst. 2008;16(6):1393-1410. doi: 10.1109/TFUZZ.2008.925908[Crossref], [Web of Science ®], [Google Scholar]
[15] Liang N, Huang G, Saratchandran P, et al. A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans Neural Netw. 2006;17(6):1411-1423. doi: 10.1109/TNN.2006.880583[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[16] Leng G, McGinnity TM, Prasad G. An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network. Fuzzy Set Syst. 2005;150(2):211-243. doi: 10.1016/j.fss.2004.03.001[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1067.68128
[17] Tung WL, Quek C. Financial volatility trading using a self-organising neural-fuzzy semantic network and option straddle-based approach. Expert Syst Appl. 2011;38(5):4668-4688. doi: 10.1016/j.eswa.2010.07.116[Crossref], [Web of Science ®], [Google Scholar]
[18] Qiao J, Wang H. A self-organizing fuzzy neural network and its applications to function approximation and forecast modeling. Neurocomputing. 2008;71(4-6):564-569. doi: 10.1016/j.neucom.2007.07.026[Crossref], [Web of Science ®], [Google Scholar]
[19] Azzem MF, Hanmandlu M, Ahmad N. Structure identification of generalized adaptive neuro-fuzzy inference systems. IEEE Trans Fuzzy Syst. 2003;11(5):668-681. [Web of Science ®], [Google Scholar]
[20] Jia L, Yuan K. Time-varying neuro-fuzzy model using probability density function techniques for batch processes. J Stat Comp Sim. 2014;84(6):1249-1260. doi: 10.1080/00949655.2013.782027[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1458.93152
[21] Subraminan K, Das AK, Sundaram S, et al. A meta-cognitive interval type-2 fuzzy inference system and its projection based learning algorithm. Evol Syst. 2013;1-12. [Google Scholar]
[22] Rong H-J, Sundarajan N, Huang G-B, et al. Extended sequential adaptive fuzzy inference system for classification problems. Evol Syst. 2011;2:71-82. doi: 10.1007/s12530-010-9023-9[Crossref], [Google Scholar]
[23] Lughofer E. Evolving fuzzy systems: methodologies, advances concepts and applications. Berlin: Springer; 2011. [Crossref], [Google Scholar] · Zbl 1216.68013
[24] Bezdek JC. Pattern recognition with fuzzy objective function algorithm. New York (NY): Plenum; 1981. [Crossref], [Google Scholar] · Zbl 0503.68069
[25] Krishnapuram R, Keller JM. A possibilistic approach to clustering. IEEE Trans Fuzzy Syst. 1993;2(1):98-110. doi: 10.1109/91.227387[Crossref], [Google Scholar]
[26] Barni M, Cappellini V, Mecocci A. A possibilistic approach to clustering. IEEE Trans Fuzzy Syst. 1996;4(3):393-396. doi: 10.1109/91.531780[Crossref], [Web of Science ®], [Google Scholar]
[27] Pal NR, Pal K, Keller JM, et al. A possibilistic fuzzy c-means clustering algorithm. IEEE Trans Fuzzy Syst. 2005;13(4):517-530. doi: 10.1109/TFUZZ.2004.840099[Crossref], [Web of Science ®], [Google Scholar]
[28] Ferraro MB, Giordani P. On possibilistic clustering with repulsion constraints for imprecise data. Inf Sci. 2013;245:63-75. doi: 10.1016/j.ins.2013.04.008[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1321.62069
[29] Ayachi R, Amor NB, Benferhat S. Inference using compiled min-based possibilistic causal networks in the presence of interventions. Fuzzy Set Syst. 2014;239:104-136. doi: 10.1016/j.fss.2013.06.017[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1315.68233
[30] Bounhas M, Hamed MG, Prade H, et al. Naive possibilistic classifiers for imprecise or uncertain numerical data. Fuzzy Set Syst. 2014;239:137-156. doi: 10.1016/j.fss.2013.07.012[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1315.68234
[31] Maciel L, Gomide F, Ballini R. Recursive possibilistic fuzzy modeling. Evolving and Autonomous Learning Systems (EALS), IEEE Symposium Series on Computation Intelligence (SSCI). Orlando, FL; 2014. p. 9-16. [Google Scholar]
[32] Gustafson EE, Kessel WC. Fuzzy clustering with a fuzzy covariance matrix. IEEE International Conference on Decision and Control; 1979. p. 761-766. [Google Scholar] · Zbl 0448.62045
[33] Safiih LM. Fuzzy parametric sample selection model: Monte Carlo simulation approach. J Stat Comp Sim. 2013;83(6):992-1006. doi: 10.1080/00949655.2011.646277[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1431.62288
[34] Yolcu U, Aladag CH, Egrioglu E, et al. Time-series forecasting with a novel fuzzy time-series approach: an example for Istanbul stock market. J Stat Comp Sim. 2013;83(4):599-612. doi: 10.1080/00949655.2011.630000[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1431.62486
[35] Angelov PP, Zhou X. Evolving fuzzy-rule-based classifiers from data streams. IEEE Trans Fuzzy Syst. 2008;16(6):1462-1475. doi: 10.1109/TFUZZ.2008.925904[Crossref], [Web of Science ®], [Google Scholar]
[36] Box GEP, Jenkins GM. Time-series analysis – forecasting and control. San Francisco (CA): Holden Day; 1976. [Google Scholar]
[37] Mackey MC, Glass L. Oscillation and chaos in physiological control systems. Science. 1977;197:287-289. doi: 10.1126/science.267326[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1383.92036
[38] Narendra KS, Parthasarathy K. Identification and control of dynamical systems using neural networks. IEEE Trans Neural Netw. 1990;1(1):4-27. doi: 10.1109/72.80202[Crossref], [PubMed], [Google Scholar]
[39] Filev D, Georgieva O. An extended version of the Gustafson-Kessel algorithm for evolving data streams clustering. In: Angelov P, Filev D, Kasabov N, editors. Evolving intelligent systems: methodology and applications, Ch. 12. Hoboken (NJ): Wiley & IEEE Press; 2010. p. 273-299. [Google Scholar]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.