zbMATH — the first resource for mathematics

Intersection local times for interlacements. (English) Zbl 1307.60104
Summary: We define renormalized intersection local times for random interlacements of Lévy processes in \(\mathbb R^d\) and prove an isomorphism theorem relating renormalized intersection local times with associated Wick polynomials.

60J55 Local time and additive functionals
60G51 Processes with independent increments; Lévy processes
60J40 Right processes
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
Full Text: DOI arXiv
[1] Arcones, M.; Giné, E., On decoupling, series expansion, and tail behavior of chaos processes, J. Theoret. Probab., 6, 101-122, (1993) · Zbl 0785.60023
[2] Bass, R. F.; Khoshnevisan, D., Intersection local times and Tanaka formulas, Ann. Inst. H. Poincaré, 29, 419-451, (1993) · Zbl 0798.60072
[3] Bass, R. F.; Rosen, J., An almost sure invariance principle for the range of planar random walks, Ann. Probab., 33, 1856-1887, (2005) · Zbl 1085.60018
[4] Dellacherie, C.; Maisonneuve, B.; Meyer, P.-A., Probabilities et potential, (1992), Hermann Paris, Chapitres XVII a XXIV
[5] Dynkin, E. B., Regularized self-intersection local times of planar Brownian motion, Ann. Probab., 16, 58-74, (1988) · Zbl 0641.60085
[6] Eisenbaum, N.; Kaspi, H.; Marcus, M.; Rosen, J.; Shi, Zhan, A ray-knight theorem for symmetric Markov processes, Ann. Probab., 28, 1781-1796, (2000) · Zbl 1044.60064
[7] Gradshteyn, I.; Ryzhik, I., Table of integrals, series and products, (1980), Academic Press Oxford · Zbl 0521.33001
[8] Kingman, J. F.C., (Poisson Processes, Oxford Studies in Probability, (2002), Clarendon Press Oxford)
[9] Le Gall, J.-F., Propriétés d’intersection des marches aléatoires, I. convergence vers le temps local d’intersection, Comm. Math. Phys., 104, 471-507, (1986) · Zbl 0609.60078
[10] Le Gall, J.-F., Wiener sausage and self intersection local times, J. Funct. Anal., 88, 299-341, (1990) · Zbl 0697.60081
[11] Le Jan, Y.; Marcus, M. B.; Rosen, J., Intersection local times, loop soups and permanental Wick powers · Zbl 1368.60080
[12] Marcus, M. B.; Rosen, J., Gaussian chaos and sample path properties of additive functionals of symmetric Markov processes, Ann. Probab., 24, 1130-1177, (1996) · Zbl 0862.60065
[13] Marcus, M. B.; Rosen, J., Renormalized self-intersection local times and Wick power chaos processes, Mem. Amer. Math. Soc., 675, (1999) · Zbl 1230.60005
[14] Marcus, M. B.; Rosen, J., Markov processes, Gaussian processes and local times, (2006), Cambridge University Press New York · Zbl 1129.60002
[15] Rosen, J., Joint continuity of renormalized intersection local times, Ann. Inst. H. Poincaré, 32, 671-700, (1996) · Zbl 0867.60049
[16] Rosen, J., Joint continuity and a Doob-Meyer type decomposition for renormalized intersection local times, Ann. Inst. H. Poincaré, 35, 143-176, (1999) · Zbl 0922.60072
[17] Sznitman, A.-S., An isomorphism theorem for random interlacements, Electron. Comm. Probab., 17, 9, 1-9, (2012) · Zbl 1247.60135
[18] Sznitman, A.-S., Topics in occupation times and Gaussian free fields, (Zurich Lectures in Advanced Mathematics, (2012), EMS Zurich) · Zbl 1246.60003
[19] A.-S. Sznitman, On scaling limits and Brownian interlacements. · Zbl 1303.60022
[20] Varadhan, S. R.S., Appendix to Euclidean quantum field theory by K. symanzyk, (Jost, R., Local Quantum Theory, (1969), Academic Press Reading, MA)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.