×

zbMATH — the first resource for mathematics

Evaluations of infinite utility streams: Pareto efficient and egalitarian axiomatics. (English) Zbl 1283.91061
Summary: This investigation focuses on the aggregation of infinite utility streams by social welfare functions. We analyze the possibility of combining Pareto-efficiency and Hammond equity principles when the feasible utilities for each generation are \([0,1]\) and the natural numbers. In the latter case, the Hammond equity ethics can be combined with non-trivial specifications of the Pareto postulate, even through anonymous social welfare functions. As a consequence, any evaluation of infinite utility streams that verifies a mild specification of the Paretian axiom must exert some interference on the affairs of particular generations.

MSC:
91B16 Utility theory
91B15 Welfare economics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Addler, Well-being and Fair Distribution: Beyond Cost-Benefit Analysis (2011) · doi:10.1093/acprof:oso/9780195384994.001.0001
[2] Alcantud, Inequality averse criteria for evaluating infinite utility streams: the impossibility of Weak Pareto, Journal of Economic Theory 147 pp 353– (2012) · Zbl 1258.91054 · doi:10.1016/j.jet.2011.01.006
[3] Alcantud, Liberal approaches to ranking infinite utility streams: when can we avoid interference?, Social Choice and Welfare (2013a) · Zbl 1288.91079 · doi:10.1007/s00355-012-0687-x
[4] Alcantud, The impossibility of social evaluations of infinite streams with strict inequality aversion, Economic Theory Bulletin (2013b) · doi:10.1007/s40505-013-0005-5
[5] Alcantud, Paretian evaluation of infinite utility streams: an egalitarian criterion, Economics Letters 106 pp 209– (2010) · Zbl 1203.91073 · doi:10.1016/j.econlet.2009.11.021
[6] Asheim , G. B. Tungodden , B. 2004a Do Koopmans’ postulates lead to discounted utilitarianism?
[7] Asheim, Resolving distributional conflicts between generations, Economic Theory 24 pp 221– (2004b) · Zbl 1084.91052 · doi:10.1007/s00199-003-0412-1
[8] Asheim , G. B. Zuber , S. 2011 A complete and strongly anonymous leximin relation on infinite streams · Zbl 1288.91059
[9] Asheim, Intergenerational Equity and Sustainability: Conference Proceedings of the IWEA Roundtable Meeting on Intergenerational Equity (2007)
[10] Asheim, Sustainable recursive social welfare functions, Economic Theory 49 pp 267– (2012) · Zbl 1277.91051 · doi:10.1007/s00199-010-0573-7
[11] d’Aspremont, Equity and the informational basis of collective choice, Review of Economic Studies 44 pp 199– (1977) · Zbl 0376.90008 · doi:10.2307/2297061
[12] Banerjee, On the equity-efficiency trade off in aggregating infinite utility streams, Economics Letters 93 pp 63– (2006) · Zbl 1254.91134 · doi:10.1016/j.econlet.2006.03.041
[13] Basu, Aggregating infinite utility streams with intergenerational equity: the impossibility of being Paretian, Econometrica 71 pp 1557– (2003) · Zbl 1153.91648 · doi:10.1111/1468-0262.00458
[14] Basu, Intergenerational Equity and Sustainability: Conference Proceedings of the IWEA Roundtable Meeting on Intergenerational Equity (2007)
[15] Crespo, On the impossibility of representing infinite utility streams, Economic Theory 40 pp 47– (2009) · Zbl 1159.91010 · doi:10.1007/s00199-008-0364-6
[16] Diamond, The evaluation of infinite utility streams, Econometrica 33 pp 170– (1965) · Zbl 0127.36602 · doi:10.2307/1911893
[17] Dubey, Fleurbaey-Michel conjecture on equitable weak Paretian social welfare order, Journal of Mathematical Economics 47 pp 434– (2011) · Zbl 1236.91063 · doi:10.1016/j.jmateco.2011.05.003
[18] Dubey, On equitable social welfare functions satisfying the Weak Pareto axiom: a complete characterization, International Journal of Economic Theory 7 pp 231– (2011) · doi:10.1111/j.1742-7363.2011.00161.x
[19] Ewald, From Kant to Hilbert: A Source Book in the Foundations of Mathematics (1996)
[20] Fleurbaey, Transfer principles and inequality aversion, with an application to optimal growth, Mathematical Social Sciences 42 pp 1– (2001) · Zbl 0980.91060 · doi:10.1016/S0165-4896(01)00066-X
[21] Fleurbaey, Intertemporal equity and the extension of the Ramsey principle, Journal of Mathematical Economics 39 pp 777– (2003) · Zbl 1046.91104 · doi:10.1016/S0304-4068(03)00054-5
[22] Hammond, Equity, Arrow’s conditions and Rawls’ difference principle, Econometrica 44 pp 793– (1976) · Zbl 0331.90015 · doi:10.2307/1913445
[23] Hara, Continuity and egalitarianism in the evaluation of infinite utility streams, Social Choice and Welfare 31 pp 179– (2008) · Zbl 1163.91347 · doi:10.1007/s00355-007-0275-7
[24] Lauwers, Ordering infinite utility streams comes at the cost of a non-Ramsey set, Journal of Mathematical Economics 46 pp 32– (2010) · Zbl 1197.91085 · doi:10.1016/j.jmateco.2009.06.007
[25] Lombardi , M. Veneziani , R. 2009 Liberal egalitarianism and the Harm Principle
[26] Lombardi, Treading a fine line: characterisations and impossibilities for liberal principles in infinitely-lived societies, The B.E. Journal of Theoretical Economics (Topics) 12 (1) pp Article 24– (2012) · Zbl 1277.91048
[27] Mariotti, Non-interference implies equality, Social Choice and Welfare 32 pp 123– (2009) · Zbl 1184.91087 · doi:10.1007/s00355-008-0316-x
[28] Mariotti , M. Veneziani , R. 2011 On the impossibility of complete non-interference in Paretian social judgements · Zbl 1285.91042
[29] Sakai, Equitable intergenerational preferences on restricted domains, Social Choice and Welfare 27 pp 41– (2006) · Zbl 1180.91085 · doi:10.1007/s00355-006-0118-y
[30] Sakamoto , N. 2011 Impossibilities of Paretian social welfare functions for infinite utility streams with distributive equity http://hdl.handle.net/10086/19290
[31] Zame, Can intergenerational equity be operationalized?, Theoretical Economics 2 pp 187– (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.