×

zbMATH — the first resource for mathematics

Level statistics and localization transitions of Lévy matrices. (English) Zbl 1356.15018
Summary: This work provides a thorough study of Lévy, or heavy-tailed, random matrices (LMs). By analyzing the self-consistent equation on the probability distribution of the diagonal elements of the resolvent we establish the equation determining the localization transition and obtain the phase diagram. Using arguments based on supersymmetric field theory and Dyson Brownian motion we show that the eigenvalue statistics is the same one as of the Gaussian orthogonal ensemble in the whole delocalized phase and is Poisson-like in the localized phase. Our numerics confirm these findings, valid in the limit of infinitely large LMs, but also reveal that the characteristic scale governing finite size effects diverges much faster than a power law approaching the transition and is already very large far from it. This leads to a very wide crossover region in which the system looks as if it were in a mixed phase. Our results, together with the ones obtained previously, now provide a complete theory of Lévy matrices.

MSC:
15B52 Random matrices (algebraic aspects)
81V35 Nuclear physics
81V70 Many-body theory; quantum Hall effect
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. L. Mehta, in: Random Matrices (2004) · Zbl 1107.15019
[2] S. N. Majumdar, in: Random Matrices, the Ulam Problem, Directed Polymers & Growth Models, and Sequence Matching (2006)
[3] DOI: 10.1016/S0370-1573(97)00088-4 · doi:10.1016/S0370-1573(97)00088-4
[4] DOI: 10.1002/ett.4460100604 · doi:10.1002/ett.4460100604
[5] DOI: 10.1103/PhysRevLett.83.1467 · doi:10.1103/PhysRevLett.83.1467
[6] F. Luo, in: Handbook of Data Intensive Computing (2011)
[7] DOI: 10.1214/EJP.v18-2473 · Zbl 1373.15053 · doi:10.1214/EJP.v18-2473
[8] DOI: 10.1007/s11511-011-0061-3 · Zbl 1217.15043 · doi:10.1007/s11511-011-0061-3
[9] DOI: 10.1103/PhysRevE.50.1810 · doi:10.1103/PhysRevE.50.1810
[10] DOI: 10.1103/PhysRevE.75.051126 · doi:10.1103/PhysRevE.75.051126
[11] DOI: 10.1103/PhysRevE.82.031135 · doi:10.1103/PhysRevE.82.031135
[12] F. L. Metz, J. Stat. Mech. 2010 pp P01010– ISSN: http://id.crossref.org/issn/1742-5468
[13] DOI: 10.1007/s00220-007-0389-x · Zbl 1157.60005 · doi:10.1007/s00220-007-0389-x
[14] DOI: 10.1209/0295-5075/78/10001 · Zbl 1244.82029 · doi:10.1209/0295-5075/78/10001
[15] DOI: 10.1214/08-AIHP188 · Zbl 1177.15037 · doi:10.1214/08-AIHP188
[16] DOI: 10.1007/s00440-012-0473-9 · Zbl 1296.15019 · doi:10.1007/s00440-012-0473-9
[17] DOI: 10.1088/1751-8113/46/2/022001 · Zbl 1266.15047 · doi:10.1088/1751-8113/46/2/022001
[18] DOI: 10.1088/0305-4470/26/5/003 · doi:10.1088/0305-4470/26/5/003
[19] DOI: 10.1209/0295-5075/9/1/015 · doi:10.1209/0295-5075/9/1/015
[20] DOI: 10.1016/S0378-4371(98)00332-X · doi:10.1016/S0378-4371(98)00332-X
[21] DOI: 10.1140/epjb/e2009-00360-7 · Zbl 1188.15038 · doi:10.1140/epjb/e2009-00360-7
[22] DOI: 10.1103/PhysRevLett.113.046806 · doi:10.1103/PhysRevLett.113.046806
[23] DOI: 10.1103/PhysRevLett.78.2803 · doi:10.1103/PhysRevLett.78.2803
[24] DOI: 10.4171/JEMS/389 · Zbl 1267.47064 · doi:10.4171/JEMS/389
[25] DOI: 10.1088/0022-3719/6/10/009 · doi:10.1088/0022-3719/6/10/009
[26] DOI: 10.1007/BF01014886 · Zbl 1036.82522 · doi:10.1007/BF01014886
[27] DOI: 10.1103/PhysRevLett.45.79 · doi:10.1103/PhysRevLett.45.79
[28] DOI: 10.1063/1.4894055 · Zbl 1306.82011 · doi:10.1063/1.4894055
[29] DOI: 10.1088/1751-8113/46/35/355204 · Zbl 1275.81044 · doi:10.1088/1751-8113/46/35/355204
[30] DOI: 10.1209/0295-5075/89/67002 · doi:10.1209/0295-5075/89/67002
[31] DOI: 10.1007/PL00011099 · doi:10.1007/PL00011099
[32] K. Efetov, in: Supersymmetry in Disorder and Chaos (1997) · Zbl 0990.82501
[33] DOI: 10.1051/jp1:1992229 · doi:10.1051/jp1:1992229
[34] DOI: 10.1016/0550-3213(91)90028-V · doi:10.1016/0550-3213(91)90028-V
[35] DOI: 10.1103/PhysRevLett.67.2049 · doi:10.1103/PhysRevLett.67.2049
[36] DOI: 10.1103/PhysRevB.75.155111 · doi:10.1103/PhysRevB.75.155111
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.