zbMATH — the first resource for mathematics

Coherent structures and dominant frequencies in a turbulent three-dimensional diffuser. (English) Zbl 1248.76102
From the summary: Dominant frequencies and coherent structures are investigated in a turbulent, three-dimensional and separated diffuser flow at \(Re=10\, 000\) (based on bulk velocity and inflow-duct height), where mean flow characteristics were first studied experimentally and later numerically. Coherent structures are deduced by proper orthogonal decomposition (POD) of the flow, which together with time probes located in the flow domain are used to extract frequency information. The present study shows that the flow contains multiple phenomena, well separated in frequency space. Dominant large-scale frequencies in a narrow band \(St\equiv fh/u_b\in[0.0092,0.014]\) (where \(h\) is the inflow-duct height and \(u_b\) is the bulk velocity), yielding time periods \(T^\ast=Tu_b/h\in[70,110]\), are deduced from the time signal probes in the upper separated part of the diffuser. The associated structures identified by the POD are large streaks arising from a sinusoidal oscillating motion in the diffuser. Their individual contributions to the total kinetic energy, dominated by the mean flow, are, however, small. The reason for the oscillating movement in this low-frequency range is concluded to be the confinement of the flow in this particular geometric set-up in combination with the high Reynolds number and the large separated zone on the top diffuser wall. Based on this analysis, it is shown that the bulk of the streamwise root mean square (r.m.s.) value arises due to large-scale motion, which in turn can explain the appearance of two or more peaks in the streamwise r.m.s. value. The weak secondary flow present in the inflow duct is shown to survive into the diffuser, where it experiences an imbalance with respect to the upper expanding corners, thereby giving rise to the asymmetry of the mean separated region in the diffuser.
76F99 Turbulence
76M22 Spectral methods applied to problems in fluid mechanics
Full Text: DOI
[1] DOI: 10.1063/1.3139294 · Zbl 1183.76457 · doi:10.1063/1.3139294
[2] DOI: 10.1017/S0022112000001257 · Zbl 1009.76043 · doi:10.1017/S0022112000001257
[3] Piquet, Turbulent Flows: Models and Physics (1999) · doi:10.1007/978-3-662-03559-7
[4] DOI: 10.1017/S0022112010000558 · Zbl 1189.76318 · doi:10.1017/S0022112010000558
[5] DOI: 10.1017/S0022112098009987 · Zbl 0974.76035 · doi:10.1017/S0022112098009987
[6] DOI: 10.1103/PhysRevE.69.026304 · doi:10.1103/PhysRevE.69.026304
[7] DOI: 10.1017/S0022112089000741 · Zbl 0659.76062 · doi:10.1017/S0022112089000741
[8] DOI: 10.1103/PhysRevE.54.3643 · doi:10.1103/PhysRevE.54.3643
[9] DOI: 10.1007/BF00271660 · Zbl 0795.76043 · doi:10.1007/BF00271660
[10] Lygren, Turbulence and Shear Flow Phenomena 1 pp 15– (1999)
[11] DOI: 10.1016/j.ijheatfluidflow.2004.02.009 · doi:10.1016/j.ijheatfluidflow.2004.02.009
[12] DOI: 10.1016/0167-2789(94)90212-7 · Zbl 0825.76010 · doi:10.1016/0167-2789(94)90212-7
[13] DOI: 10.1006/jpdc.2000.1676 · Zbl 0972.68191 · doi:10.1006/jpdc.2000.1676
[14] DOI: 10.1017/S0022112009007940 · Zbl 1183.76054 · doi:10.1017/S0022112009007940
[15] Spille-Kohoff, DNS/LES Progress and Challenges, Third AFSOR Conference on DNS and LES, Arlington, Texas (2001)
[16] Sirovich, Q. Appl. Maths 45 pp 561– (1987) · Zbl 0676.76047 · doi:10.1090/qam/910462
[17] DOI: 10.1146/annurev.fl.21.010189.001225 · doi:10.1146/annurev.fl.21.010189.001225
[18] DOI: 10.1115/1.3241761 · doi:10.1115/1.3241761
[19] DOI: 10.1115/1.4001009 · doi:10.1115/1.4001009
[20] Lumley, Atmospheric Turbulence and Radio Wave Propagation pp 166– (1967)
[21] DOI: 10.1017/S0022112096003941 · Zbl 0900.76367 · doi:10.1017/S0022112096003941
[22] DOI: 10.1006/jfls.2000.0327 · doi:10.1006/jfls.2000.0327
[23] DOI: 10.1016/0167-6105(90)90212-U · doi:10.1016/0167-6105(90)90212-U
[24] DOI: 10.1017/S0022112080000122 · Zbl 0428.76049 · doi:10.1017/S0022112080000122
[25] DOI: 10.1017/S0022112085001628 · doi:10.1017/S0022112085001628
[26] DOI: 10.1006/jcph.1997.5651 · Zbl 0904.76057 · doi:10.1006/jcph.1997.5651
[27] DOI: 10.1017/S0022112099005054 · Zbl 0983.76042 · doi:10.1017/S0022112099005054
[28] DOI: 10.1016/j.ijheatfluidflow.2010.05.004 · doi:10.1016/j.ijheatfluidflow.2010.05.004
[29] DOI: 10.1146/annurev.fluid.33.1.129 · doi:10.1146/annurev.fluid.33.1.129
[30] DOI: 10.1017/CBO9780511622700 · doi:10.1017/CBO9780511622700
[31] DOI: 10.1016/j.ijheatfluidflow.2008.10.003 · doi:10.1016/j.ijheatfluidflow.2008.10.003
[32] DOI: 10.1007/s10494-007-9091-5 · Zbl 1258.76104 · doi:10.1007/s10494-007-9091-5
[33] DOI: 10.1016/j.ijheatfluidflow.2008.01.018 · doi:10.1016/j.ijheatfluidflow.2008.01.018
[34] DOI: 10.1063/1.869686 · doi:10.1063/1.869686
[35] DOI: 10.1017/S0022112009992059 · Zbl 1183.76833 · doi:10.1017/S0022112009992059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.