×

Analysis of curved beams using a new differential transformation based curved beam element. (English) Zbl 1338.74075

Summary: Differential transformation method is used to obtain the shape functions for nodal variables of an arbitrarily non-uniform curved beam element including the effects of shear deformation considering axially functionally graded material. The proposed shape functions depend on the variations in cross-sectional area, moment of inertia, curvature and material properties along the axis of the curved beam element. The static and free vibration of axially functionally graded tapered curved beams including shear deformation and rotary inertia are studied through solving several examples. Numerical results are presented for circular, parabolic, catenary, elliptic and sinusoidal beams (both forms – prime and quadratic) with hinged-hinged, hinged-clamped and clamped-clamped and clamped-free end restraints. Three general taper types (depth taper, breadth taper and square taper) for rectangular cross-section are studied. Out of plane vibration is studied, and the lowest natural frequencies are calculated and compared with the published results. Out of plane buckling is investigated for circular beams due to radial load.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74S05 Finite element methods applied to problems in solid mechanics
74H45 Vibrations in dynamical problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Michell, JH, The small deformation of curves and surfaces with application to the vibrations of helix and circular ring (1890)
[2] Love AEH (1892) On the vibrations of an elastic circular ring. Proc Lond Math Soc 24:118-120 · JFM 25.1577.02 · doi:10.1112/plms/s1-24.1.118
[3] Love AEH (1944) A treatise on the mathematical theory of elasticity, 4th edn. Dover, New York · Zbl 0063.03651
[4] Volterra F, Morell JD (1961) Lowest natural frequency of elastic arc for vibrations outside the plans of initial curvature. J Appl Mech 28:624-627 · doi:10.1115/1.3641794
[5] Ojalvo IU, Newman N (1964) Natural frequencies of clamped ring segments. Mach Des 21:219-220
[6] Rao SS (1971) Effects of transverse shear and rotary inertia on the coupled twist-bending vibrations of circular rings. J Sound Vib 16(4):551-566 · Zbl 0219.73095 · doi:10.1016/0022-460X(71)90662-6
[7] Petyt M, Fleischer CC (1971) Free vibration of curved beam. J Sound Vib 18(1):17-30 · Zbl 0233.73153 · doi:10.1016/0022-460X(71)90627-4
[8] Davis R, Henshell RD, Warburton GB (1972) Curved beam finite elements for coupled bending and torsional vibrations. Earthq Eng Struct Dyn 1:165-175 · doi:10.1002/eqe.4290010205
[9] Markus S, Nanasi T (1981) Vibration of curved beams. Shock Vib Dig 13:3-14 · Zbl 0477.73069 · doi:10.1177/058310248101300403
[10] Laura PAA, Maurizi MJ (1987) Recent research on vibrations of arch type structures. Shock Vib Dig 19:6-9 · doi:10.1177/058310248701900103
[11] Chidamparam P, Leissa AW (1993) Vibrations of planar curved beams, rings and arches. Appl Mech Rev 46:467-483 · doi:10.1115/1.3120374
[12] Auciello NM, De Rosa MA (1994) Free vibrations of circular arches: a review. J Sound Vib 174:433-458 · Zbl 0945.74586 · doi:10.1006/jsvi.1994.1388
[13] Wagner H, Ramamurti V (1977) Beam vibrations—a review. Shock Vib Dig 9:17-24 · doi:10.1177/058310247700900906
[14] Wang TM, Laskey A, Ahmad M (1984) Natural frequencies for out-of-plane vibrations of continuous curved beams considering shear and rotary inertia. Int J Solids Struct 20:257-265 · Zbl 0532.73057 · doi:10.1016/0020-7683(84)90045-3
[15] Kawakami M, Sakiyama T, Matsuda H, Morita C (1995) In plane and out-of-plane free vibrations of curved beams with variable sections. J Sound Vib 187:381-401 · doi:10.1006/jsvi.1995.0531
[16] Xiong Y, Tabarrok BA (1992) A finite element model for the vibration of spatial rods under various applied loads. Int J Mech Sci 34:41-51 · Zbl 0747.73032 · doi:10.1016/0020-7403(92)90052-I
[17] Rajasekaran S (2013) Buckling and vibration of axially functionally graded non-uniform beams using differential transformation based dynamic stiffness approach. Meccanica 48(50):1053-1070 · Zbl 1293.74127 · doi:10.1007/s11012-012-9651-1
[18] Bambill DV, Rossit CA, Rossi RE, Felix DH (2013) Transverse free vibration of non-uniform rotating Timoshenko beams with elastically clamped boundary conditions. Meccanica 48(6):1289-1311 · Zbl 1293.74162 · doi:10.1007/s11012-012-9668-5
[19] Yildirim V (1996) Investigation of parameters affecting free vibration frequency of helical springs. Int J Numer Methods Eng 39:99-114 · Zbl 0842.73042 · doi:10.1002/(SICI)1097-0207(19960115)39:1<99::AID-NME850>3.0.CO;2-M
[20] Wu JS, Chiang LK (2004) Free vibrations of a circularly curved Timoshenko beam normal to its initial plane using finite curved beam element. Comput Struct 82:25-40 · doi:10.1016/j.compstruc.2003.08.005
[21] Wu JS, Chiang LK (2004) A new approach for free vibration analysis of arches with effect of shear deformation and rotary inertia considered. J Sound Vib 277:49-71 · doi:10.1016/j.jsv.2003.08.012
[22] Tufekci E, Arpaci A (1998) Exact solution of in-plane vibrations of circular arches with account taken of axial extension, transverse shear and rotary inertia effects. J Sound Vib 209:845-856 · doi:10.1006/jsvi.1997.1290
[23] Tufekci E, Dogruer Y (2006) Out-of-plane free vibration of a circular arch with uniform cross section: exact solution. J Sound Vib 291:525-538 · doi:10.1016/j.jsv.2005.06.008
[24] Irie T, Yamada AG, Takahashi I (1982) Natural frequencies of out-of-plane vibrations of arcs. J Appl Mech 49:910-913 · Zbl 0503.73037 · doi:10.1115/1.3162635
[25] Kang K, Bert CW, Stritz AG (1995) Vibration analysis for shear deformable circular arches by the differentia quadrature method. J Sound Vib 181:353-360 · Zbl 0982.74513 · doi:10.1006/jsvi.1995.0258
[26] Huang CS, Tseng YP, Chang SH, Hung CI (2000) Out-of-plane dynamic analysis of beams with arbitrarily curvature and cross section by dynamic stiffness matrix method. Int J Solids Struct 37:495-513 · Zbl 0991.74038 · doi:10.1016/S0020-7683(99)00017-7
[27] Chen CN (2008) DQEM analysis of out-of-plane vibration of non-prismatic curved beam structures considering the effects of shear deformation. Adv Eng Softw 39:466-472 · doi:10.1016/j.advengsoft.2007.05.010
[28] Wang TM, Nettleton RH, Kerta B (1980) Natural frequencies for out-of-plane vibrations of continuous curved beams. J Sound Vib 68:427-436 · Zbl 0434.73063 · doi:10.1016/0022-460X(80)90397-1
[29] Snyder JM, Wilson JF (1992) Free vibrations of continuous horizontally curved beam. J Sound Vib 157:340-355 · Zbl 0925.73308 · doi:10.1016/0022-460X(92)90686-R
[30] Piovan MT, Cortinez H, Rossi RE (2000) Out of plane vibrations of shear deformable continuous horizontally curved thin-walled beam. J Sound Vib 237:101-118 · doi:10.1006/jsvi.2000.3055
[31] Wang TM, Brannen WF (1982) Natural frequencies of out of plane vibrations of curved beams on elastic foundations. J Sound Vib 84:241-246 · doi:10.1016/S0022-460X(82)80006-0
[32] Issa MS, Nasr ME, Naiem NA (1990) Free vibrations of curved Timoshenko beams on Pasternak foundation. Int J Solids Struct 26:1243-1252 · doi:10.1016/0020-7683(90)90059-5
[33] Lee BK, Oh SJ, Park KK (2002) Free vibrations of shear deformable circular curved beams resting on an elastic foundation. Int J Struct Stab Dyn dy(2):77-97 · Zbl 1205.74072 · doi:10.1142/S0219455402000440
[34] Sabuncu M, Ozturk H, Cimer S (2011) Out of plane dynamic stability analysis of curved beam subjected to uniformly distributed radial loading. Int J Appl Mech 46(11):1327-1337 · Zbl 1272.74314 · doi:10.1007/s10778-011-0426-5
[35] Silva KM, Urgueira PV (1988) Out of plane dynamic response of curved beams an analytical model. Int J Solids Struct 24(3):271-284 · Zbl 0629.73042 · doi:10.1016/0020-7683(88)90033-9
[36] Yang F, Sedaghati R, Esmailzadeh E (2008) Free in-plane vibration of general curved beams using finite element method. J Sound Vib 318(4-5):850-867 · doi:10.1016/j.jsv.2008.04.041
[37] Choi JK, Lim JK (1993) Simple curved shear beam elements. Commun Numer Methods Eng 9(8):659-669 · Zbl 0778.73064 · doi:10.1002/cnm.1640090805
[38] Koziey BL, Mirza FA (1994) Consistent curved beam element. Comput Struct 51(6):643-654 · Zbl 0868.73075 · doi:10.1016/S0045-7949(05)80003-3
[39] Litewka P, Rakowski J (1997) Efficient curved finite element. Int J Numer Methods Eng 40(14):2629-2652 · Zbl 0890.73069 · doi:10.1002/(SICI)1097-0207(19970730)40:14<2629::AID-NME179>3.0.CO;2-Y
[40] Sabir AB, Djoudi MS, Sfendji A (1994) The effect of shear deformation on the vibration of circular arches by the finite element method. Thin-Walled Struct 18:47-66 · doi:10.1016/0263-8231(94)90046-9
[41] Lee SY, Chao JC (2000) Out of plane vibrations of curved non-uniform beams of constant radius. J Sound Vib 238(3):443-458 · doi:10.1006/jsvi.2000.3084
[42] Yousefi A, Rastgoo A (2011) Free vibrations of functionally graded spatial curved beams. Comput Struct 93:3048-3056 · doi:10.1016/j.compstruct.2011.04.024
[43] Lee BK, Oh SJ, Mo JM, Lee TE (2008) Out-of-plane free vibrations of curved beams with variable curvature. J Sound Vib 318:227-246 · doi:10.1016/j.jsv.2008.04.015
[44] Lockwood EH (1961) A book of curves. Cambridge University Press, Cambridge · Zbl 0098.33702 · doi:10.1017/CBO9780511569340
[45] Lawrence JD (1972) A catalog of special plane curves. Dover, New York · Zbl 0257.50002
[46] Oh, SJ; Lee, BK; Lee, IW, Free vibrations of circular arches with variable cross-section considering shear deformations and rotatory inertia, Seoul, Korea, October 13-16
[47] Oh, SJ; Lee, BK; Lee, IW; Park, MH, Free vibrations of noncircular arches considering rotatory inertia and shear deformation, Barcelona, Spain
[48] Rajasekaran S (2013) Free vibration of tapered arches made of axially functionally graded materials. Struct Eng Mech 45(4):565-590
[49] Leontovich V (1959) Frames and arches. Mc-Graw-Hill, New York
[50] Wakashima K, Hirano T, Nino M (1990) Space applications of advanced structural materials. ESA SP 303:97-102
[51] Nakamura T, Wang T, Sampath S (2000) Determination of properties of graded materials by inverse analysis and instrumented indentation. Acta Mater 48:4293-4306 · doi:10.1016/S1359-6454(00)00217-2
[52] Zhou JK (1980) Differential transform and its application for electrical circuits. Huazhong University Press, China
[53] Ozdemir O, Kaya MO (2006) Flap wise bending vibration analysis of a rotating tapered cantilever Bernoulli-Euler beam by differential transform method. J Sound Vib 289:413-420 · doi:10.1016/j.jsv.2005.01.055
[54] Mei C (2008) Application of differential transformation technique to free vibration analysis of a centrifugally stiffened beam. Comput Struct 86:1280-1284 · doi:10.1016/j.compstruc.2007.10.003
[55] Chen CK, Ho SH (1996) Application of differential transformation to eigenvalue problem. Appl Comput Math 79:504-510 · Zbl 0879.34077 · doi:10.1016/0096-3003(95)00253-7
[56] Malik M, Dang HH (1998) Vibration analysis of continuous system by differential transformation. Appl Math Comput 96:17-26 · Zbl 0969.74539 · doi:10.1016/S0096-3003(97)10076-5
[57] Schilling RL, Harris SL (2000) Applied numerical methods for engineers using Matlab and C. Brooks/Cole/Thomson Learning, New York
[58] Papangelis JP, Trahair NS (1987) Flexural torsional buckling of arches. J Struct Eng 113(4):889-906 · doi:10.1061/(ASCE)0733-9445(1987)113:4(889)
[59] Wilson, EL, Three dimensional static and dynamic analysis of structures, Berkeley, USA
[60] Pilkey WD (2005) Formula for stress, strain and structural matrices, 2nd edn. Wiley, New York
[61] Rajasekaran S, Padmanabhan S (1989) Equations of curved beams. J Eng Mech Div 115(5):1094-1111 · doi:10.1061/(ASCE)0733-9399(1989)115:5(1094)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.