Davoli, Elisa; Scarpa, Luca; Trussardi, Lara Nonlocal-to-local convergence of Cahn-Hilliard equations: Neumann boundary conditions and viscosity terms. (English) Zbl 07298823 Arch. Ration. Mech. Anal. 239, No. 1, 117-149 (2021). MSC: 76V05 76M45 35Q35 PDF BibTeX XML Cite \textit{E. Davoli} et al., Arch. Ration. Mech. Anal. 239, No. 1, 117--149 (2021; Zbl 07298823) Full Text: DOI
Giorgini, Andrea; Temam, Roger Weak and strong solutions to the nonhomogeneous incompressible Navier-Stokes-Cahn-Hilliard system. (English. French summary) Zbl 1452.35151 J. Math. Pures Appl. (9) 144, 194-249 (2020). MSC: 35Q35 76D03 76D05 76T06 35A01 PDF BibTeX XML Cite \textit{A. Giorgini} and \textit{R. Temam}, J. Math. Pures Appl. (9) 144, 194--249 (2020; Zbl 1452.35151) Full Text: DOI
Zhao, Xiaopeng; Zhou, Yong On well-posedness and large time behavior for smectic-a liquid crystals equations in \(\mathbb{R}^3\). (English) Zbl 1452.35159 Z. Angew. Math. Phys. 71, No. 5, Paper No. 179, 18 p. (2020). MSC: 35Q35 35D35 76A15 35A01 35A02 PDF BibTeX XML Cite \textit{X. Zhao} and \textit{Y. Zhou}, Z. Angew. Math. Phys. 71, No. 5, Paper No. 179, 18 p. (2020; Zbl 1452.35159) Full Text: DOI
Deugoué, G.; Ngana, A. Ndongmo; Medjo, T. Tachim Global existence of martingale solutions and large time behavior for a 3D stochastic nonlocal Cahn-Hilliard-Navier-Stokes systems with shear dependent viscosity. (English) Zbl 1447.76012 J. Math. Fluid Mech. 22, No. 4, Paper No. 46, 42 p. (2020). MSC: 76D06 76T06 35Q30 35R60 PDF BibTeX XML Cite \textit{G. Deugoué} et al., J. Math. Fluid Mech. 22, No. 4, Paper No. 46, 42 p. (2020; Zbl 1447.76012) Full Text: DOI
Pan, Jiaojiao; Xing, Chao; Luo, Hong Uniform regularity of the weak solution to higher-order Navier-Stokes-Cahn-Hilliard systems. (English) Zbl 1442.35059 J. Math. Anal. Appl. 486, No. 2, Article ID 123925, 24 p. (2020). MSC: 35B65 35K35 35K58 35Q30 35B45 PDF BibTeX XML Cite \textit{J. Pan} et al., J. Math. Anal. Appl. 486, No. 2, Article ID 123925, 24 p. (2020; Zbl 1442.35059) Full Text: DOI
Sun, Shouwen; Li, Jun; Zhao, Jia; Wang, Qi Structure-preserving numerical approximations to a non-isothermal hydrodynamic model of binary fluid flows. (English) Zbl 1440.35278 J. Sci. Comput. 83, No. 3, Paper No. 50, 43 p. (2020). MSC: 35Q35 76T06 76D05 76D45 80A19 65M22 65M06 65N06 65N50 65T50 PDF BibTeX XML Cite \textit{S. Sun} et al., J. Sci. Comput. 83, No. 3, Paper No. 50, 43 p. (2020; Zbl 1440.35278) Full Text: DOI
Song, Chang Ming; Zhang, Jian Lin; Wang, Yuan Yuan Time-periodic solution to the compressible Navier-Stokes/Allen-Cahn system. (English) Zbl 1437.35548 Acta Math. Sin., Engl. Ser. 36, No. 4, 419-442 (2020). MSC: 35Q30 35Q35 35B10 76N10 76T06 35B35 35B65 PDF BibTeX XML Cite \textit{C. M. Song} et al., Acta Math. Sin., Engl. Ser. 36, No. 4, 419--442 (2020; Zbl 1437.35548) Full Text: DOI
Conti, Monica; Giorgini, Andrea Well-posedness for the Brinkman-Cahn-Hilliard system with unmatched viscosities. (English) Zbl 1434.35087 J. Differ. Equations 268, No. 10, 6350-6384 (2020). MSC: 35Q35 76D03 76D45 76S05 76T99 35D35 35D30 35A01 35A02 PDF BibTeX XML Cite \textit{M. Conti} and \textit{A. Giorgini}, J. Differ. Equations 268, No. 10, 6350--6384 (2020; Zbl 1434.35087) Full Text: DOI
Tachim Medjo, Theodore On the weak solutions to a 3D stochastic Cahn-Hilliard-Navier-Stokes model. (English) Zbl 1431.35260 Z. Angew. Math. Phys. 71, No. 1, Paper No. 13, 23 p. (2020). MSC: 35R60 35Q35 60H15 76M35 86A05 PDF BibTeX XML Cite \textit{T. Tachim Medjo}, Z. Angew. Math. Phys. 71, No. 1, Paper No. 13, 23 p. (2020; Zbl 1431.35260) Full Text: DOI
Giorgini, Andrea Well-posedness of a diffuse interface model for Hele-Shaw flows. (English) Zbl 1435.35297 J. Math. Fluid Mech. 22, No. 1, Paper No. 5, 36 p. (2020). Reviewer: Thomas Ernst (Uppsala) MSC: 35Q35 35D35 35K61 76D27 76S05 76D05 35B65 35D30 35A01 35A02 76D45 PDF BibTeX XML Cite \textit{A. Giorgini}, J. Math. Fluid Mech. 22, No. 1, Paper No. 5, 36 p. (2020; Zbl 1435.35297) Full Text: DOI
Tachim Medjo, T. Weak solution of a stochastic 3D Cahn-Hilliard-Navier-Stokes model driven by jump noise. (English) Zbl 07153786 J. Math. Anal. Appl. 484, No. 1, Article ID 123680, 41 p. (2020). MSC: 60 91 PDF BibTeX XML Cite \textit{T. Tachim Medjo}, J. Math. Anal. Appl. 484, No. 1, Article ID 123680, 41 p. (2020; Zbl 07153786) Full Text: DOI
Liang, Zhilei; Niu, Qiang; Shuai, Jiangyu Energy equality for weak solutions to Cahn-Hilliard/Navier-Stokes equations. (English) Zbl 1428.35372 Appl. Math. Lett. 99, Article ID 105978, 8 p. (2020). MSC: 35Q35 35D30 35B65 76D05 76T99 PDF BibTeX XML Cite \textit{Z. Liang} et al., Appl. Math. Lett. 99, Article ID 105978, 8 p. (2020; Zbl 1428.35372) Full Text: DOI
Zhao, Xiaopeng Strong solutions to the density-dependent incompressible Cahn-Hilliard-Navier-Stokes system. (English) Zbl 1441.35205 J. Hyperbolic Differ. Equ. 16, No. 4, 701-742 (2019). MSC: 35Q35 35D35 76T06 PDF BibTeX XML Cite \textit{X. Zhao}, J. Hyperbolic Differ. Equ. 16, No. 4, 701--742 (2019; Zbl 1441.35205) Full Text: DOI
Liu, Yuning; Wu, Hao; Xu, Xiang Global well-posedness of the two dimensional Beris-Edwards system with general Laudau-de Gennes free energy. (English) Zbl 1428.35378 J. Differ. Equations 267, No. 12, 6958-7001 (2019). MSC: 35Q35 35Q30 76D03 76D05 76A15 35D30 PDF BibTeX XML Cite \textit{Y. Liu} et al., J. Differ. Equations 267, No. 12, 6958--7001 (2019; Zbl 1428.35378) Full Text: DOI arXiv
Giorgini, Andrea; Miranville, Alain; Temam, Roger Uniqueness and regularity for the Navier-Stokes-Cahn-Hilliard System. (English) Zbl 1419.35160 SIAM J. Math. Anal. 51, No. 3, 2535-2574 (2019). MSC: 35Q35 35K61 76D03 PDF BibTeX XML Cite \textit{A. Giorgini} et al., SIAM J. Math. Anal. 51, No. 3, 2535--2574 (2019; Zbl 1419.35160) Full Text: DOI arXiv
You, Bo Pullback exponential attractors for the viscous Cahn-Hilliard-Navier-Stokes system with dynamic boundary conditions. (English) Zbl 07096776 J. Math. Anal. Appl. 478, No. 2, 321-344 (2019). MSC: 35 37 PDF BibTeX XML Cite \textit{B. You}, J. Math. Anal. Appl. 478, No. 2, 321--344 (2019; Zbl 07096776) Full Text: DOI
Fan, Jishan; Li, Fucai Regularity criteria for Navier-Stokes-Allen-Cahn and related systems. (English) Zbl 07085396 Front. Math. China 14, No. 2, 301-314 (2019). MSC: 76T99 76D05 35Q35 PDF BibTeX XML Cite \textit{J. Fan} and \textit{F. Li}, Front. Math. China 14, No. 2, 301--314 (2019; Zbl 07085396) Full Text: DOI
Gal, Ciprian G.; Grasselli, Maurizio; Wu, Hao Global weak solutions to a diffuse interface model for incompressible two-phase flows with moving contact lines and different densities. (English) Zbl 1444.76001 Arch. Ration. Mech. Anal. 234, No. 1, 1-56 (2019). MSC: 76-02 76D03 76D05 76T99 76R50 35Q35 PDF BibTeX XML Cite \textit{C. G. Gal} et al., Arch. Ration. Mech. Anal. 234, No. 1, 1--56 (2019; Zbl 1444.76001) Full Text: DOI
Tachim Medjo, T. A note on the regularity of weak solutions to the coupled 2D Allen-Cahn-Navier-Stokes system. (English) Zbl 1420.35200 J. Appl. Anal. 25, No. 1, 111-117 (2019). MSC: 35Q30 35Q35 35D30 35B65 76D05 PDF BibTeX XML Cite \textit{T. Tachim Medjo}, J. Appl. Anal. 25, No. 1, 111--117 (2019; Zbl 1420.35200) Full Text: DOI
Favre, Gianluca; Schimperna, Giulio On a Navier-Stokes-Allen-Cahn model with inertial effects. (English) Zbl 1416.35203 J. Math. Anal. Appl. 475, No. 1, 811-838 (2019). MSC: 35Q35 35D30 35D35 35B40 76T10 PDF BibTeX XML Cite \textit{G. Favre} and \textit{G. Schimperna}, J. Math. Anal. Appl. 475, No. 1, 811--838 (2019; Zbl 1416.35203) Full Text: DOI
Medjo, Theodore Tachim On the existence and uniqueness of solution to a stochastic 2D Allen-Cahn-Navier-Stokes model. (English) Zbl 1410.35295 Stoch. Dyn. 19, No. 1, Article ID 1950007, 28 p. (2019). MSC: 35R60 35Q35 60H15 76M35 86A05 PDF BibTeX XML Cite \textit{T. T. Medjo}, Stoch. Dyn. 19, No. 1, Article ID 1950007, 28 p. (2019; Zbl 1410.35295) Full Text: DOI
Tachim Medjo, T. The exponential behavior of a stochastic Cahn-Hilliard-Navier-Stokes model with multiplicative noise. (English) Zbl 1409.35241 Commun. Pure Appl. Anal. 18, No. 3, 1117-1138 (2019). MSC: 35R60 35Q35 60H15 76M35 86A05 PDF BibTeX XML Cite \textit{T. Tachim Medjo}, Commun. Pure Appl. Anal. 18, No. 3, 1117--1138 (2019; Zbl 1409.35241) Full Text: DOI
Della Porta, Francesco; Giorgini, Andrea; Grasselli, Maurizio The nonlocal Cahn-Hilliard-Hele-Shaw system with logarithmic potential. (English) Zbl 1395.35163 Nonlinearity 31, No. 10, 4851-4881 (2018). MSC: 35Q35 35B40 35B65 35D35 PDF BibTeX XML Cite \textit{F. Della Porta} et al., Nonlinearity 31, No. 10, 4851--4881 (2018; Zbl 1395.35163) Full Text: DOI
Lopes, Juliana Honda; Planas, Gabriela Well-posedness for a non-isothermal flow of two viscous incompressible fluids. (English) Zbl 1397.35216 Commun. Pure Appl. Anal. 17, No. 6, 2455-2477 (2018). MSC: 35Q35 35A01 35K20 76D05 35R35 35K05 PDF BibTeX XML Cite \textit{J. H. Lopes} and \textit{G. Planas}, Commun. Pure Appl. Anal. 17, No. 6, 2455--2477 (2018; Zbl 1397.35216) Full Text: DOI
Lam, Kei Fong; Wu, Hao Thermodynamically consistent Navier-Stokes-Cahn-Hilliard models with mass transfer and chemotaxis. (English) Zbl 1397.92100 Eur. J. Appl. Math. 29, No. 4, 595-644 (2018). MSC: 92C17 35Q30 PDF BibTeX XML Cite \textit{K. F. Lam} and \textit{H. Wu}, Eur. J. Appl. Math. 29, No. 4, 595--644 (2018; Zbl 1397.92100) Full Text: DOI arXiv
Medjo, Theodore Tachim Pullback \(\mathbb{V}\)-attractor of a three dimensional globally modified two-phase flow model. (English) Zbl 1397.35175 Discrete Contin. Dyn. Syst. 38, No. 4, 2141-2169 (2018). MSC: 35Q30 35Q35 35R11 35B41 76A05 35D35 PDF BibTeX XML Cite \textit{T. T. Medjo}, Discrete Contin. Dyn. Syst. 38, No. 4, 2141--2169 (2018; Zbl 1397.35175) Full Text: DOI
Abels, Helmut; Liu, Yuning Sharp interface limit for a Stokes/Allen-Cahn system. (English) Zbl 1394.35343 Arch. Ration. Mech. Anal. 229, No. 1, 417-502 (2018). MSC: 35Q35 76D07 76D05 35C20 PDF BibTeX XML Cite \textit{H. Abels} and \textit{Y. Liu}, Arch. Ration. Mech. Anal. 229, No. 1, 417--502 (2018; Zbl 1394.35343) Full Text: DOI arXiv
Li, Yinghua; Huang, Mingxia Strong solutions for an incompressible Navier-Stokes/Allen-Cahn system with different densities. (English) Zbl 1394.35362 Z. Angew. Math. Phys. 69, No. 3, Paper No. 68, 18 p. (2018). MSC: 35Q35 35D35 35A01 35A02 PDF BibTeX XML Cite \textit{Y. Li} and \textit{M. Huang}, Z. Angew. Math. Phys. 69, No. 3, Paper No. 68, 18 p. (2018; Zbl 1394.35362) Full Text: DOI
Medjo, T. Tachim Unique strong and \(\mathbb {V}\)-attractor of a three-dimensional globally modified two-phase flow model. (English) Zbl 1393.35177 Ann. Mat. Pura Appl. (4) 197, No. 3, 843-868 (2018). MSC: 35Q35 35Q30 35D35 76D05 35B41 35D30 PDF BibTeX XML Cite \textit{T. T. Medjo}, Ann. Mat. Pura Appl. (4) 197, No. 3, 843--868 (2018; Zbl 1393.35177) Full Text: DOI
Giorgini, Andrea; Grasselli, Maurizio; Wu, Hao The Cahn-Hilliard-Hele-Shaw system with singular potential. (English) Zbl 1394.35356 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 35, No. 4, 1079-1118 (2018). MSC: 35Q35 35B40 35B41 76D27 35D30 35D35 76S05 35A02 35A01 PDF BibTeX XML Cite \textit{A. Giorgini} et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 35, No. 4, 1079--1118 (2018; Zbl 1394.35356) Full Text: DOI
Li, Fang; You, Bo Random attractor for the stochastic Cahn-Hilliard-Navier-Stokes system with small additive noise. (English) Zbl 1391.35070 Stochastic Anal. Appl. 36, No. 3, 546-559 (2018). MSC: 35B41 37L55 35R60 35Q30 PDF BibTeX XML Cite \textit{F. Li} and \textit{B. You}, Stochastic Anal. Appl. 36, No. 3, 546--559 (2018; Zbl 1391.35070) Full Text: DOI
Tachim Medjo, T. Pullback \(\mathbb V\)-attractor of a three dimensional globally modified Cahn-Hilliard-Navier-Stokes model. (English) Zbl 1392.35211 Appl. Anal. 97, No. 6, 1016-1041 (2018). Reviewer: Vladimir Mityushev (Kraków) MSC: 35Q30 35Q35 35B41 35D35 35D30 76D05 PDF BibTeX XML Cite \textit{T. Tachim Medjo}, Appl. Anal. 97, No. 6, 1016--1041 (2018; Zbl 1392.35211) Full Text: DOI
Frigeri, Sergio; Grasselli, Maurizio; Pražák, Dalibor Nonlocal Cahn-Hilliard-Navier-Stokes systems with shear dependent viscosity. (English) Zbl 1382.35218 J. Math. Anal. Appl. 459, No. 2, 753-777 (2018). MSC: 35Q35 76A05 35B65 35D30 35A02 PDF BibTeX XML Cite \textit{S. Frigeri} et al., J. Math. Anal. Appl. 459, No. 2, 753--777 (2018; Zbl 1382.35218) Full Text: DOI
Gal, Ciprian G.; Giorgini, Andrea; Grasselli, Maurizio The nonlocal Cahn-Hilliard equation with singular potential: well-posedness, regularity and strict separation property. (English) Zbl 1400.35178 J. Differ. Equations 263, No. 9, 5253-5297 (2017). MSC: 35L35 35B40 35B41 35B65 35Q30 35Q82 35R09 35L77 PDF BibTeX XML Cite \textit{C. G. Gal} et al., J. Differ. Equations 263, No. 9, 5253--5297 (2017; Zbl 1400.35178) Full Text: DOI
Freistühler, Heinrich; Kotschote, Matthias Dynamical stability of diffuse phase boundaries in compressible fluids. (English) Zbl 1391.76148 Bothe, Dieter (ed.) et al., Transport processes at fluidic interfaces. Basel: Birkhäuser/Springer (ISBN 978-3-319-56601-6/hbk; 978-3-319-56602-3/ebook). Advances in Mathematical Fluid Mechanics, 355-389 (2017). MSC: 76E17 76E30 PDF BibTeX XML Cite \textit{H. Freistühler} and \textit{M. Kotschote}, in: Transport processes at fluidic interfaces. Basel: Birkhäuser/Springer. 355--389 (2017; Zbl 1391.76148) Full Text: DOI
Abels, Helmut; Liu, Yuning; Schöttl, Andreas Sharp interface limits for diffuse interface models for two-phase flows of viscous incompressible fluids. (English) Zbl 1391.76767 Bothe, Dieter (ed.) et al., Transport processes at fluidic interfaces. Basel: Birkhäuser/Springer (ISBN 978-3-319-56601-6/hbk; 978-3-319-56602-3/ebook). Advances in Mathematical Fluid Mechanics, 231-253 (2017). MSC: 76T10 76D05 PDF BibTeX XML Cite \textit{H. Abels} et al., in: Transport processes at fluidic interfaces. Basel: Birkhäuser/Springer. 231--253 (2017; Zbl 1391.76767) Full Text: DOI
Abels, Helmut; Garcke, Harald; Grün, Günther; Metzger, Stefan Diffuse interface models for incompressible two-phase flows with different densities. (English) Zbl 1391.76765 Bothe, Dieter (ed.) et al., Transport processes at fluidic interfaces. Basel: Birkhäuser/Springer (ISBN 978-3-319-56601-6/hbk; 978-3-319-56602-3/ebook). Advances in Mathematical Fluid Mechanics, 203-229 (2017). MSC: 76T10 76-02 80A17 PDF BibTeX XML Cite \textit{H. Abels} et al., in: Transport processes at fluidic interfaces. Basel: Birkhäuser/Springer. 203--229 (2017; Zbl 1391.76765) Full Text: DOI
Giorgini, Andrea; Grasselli, Maurizio; Miranville, Alain The Cahn-Hilliard-Oono equation with singular potential. (English) Zbl 1386.35023 Math. Models Methods Appl. Sci. 27, No. 13, 2485-2510 (2017). MSC: 35B40 35B45 35B65 35Q70 80A22 PDF BibTeX XML Cite \textit{A. Giorgini} et al., Math. Models Methods Appl. Sci. 27, No. 13, 2485--2510 (2017; Zbl 1386.35023) Full Text: DOI
Wu, Hao Well-posedness of a diffuse-interface model for two-phase incompressible flows with thermo-induced Marangoni effect. (English) Zbl 1386.35360 Eur. J. Appl. Math. 28, No. 3, 380-434 (2017). MSC: 35Q35 35B30 76D05 PDF BibTeX XML Cite \textit{H. Wu}, Eur. J. Appl. Math. 28, No. 3, 380--434 (2017; Zbl 1386.35360) Full Text: DOI
Diegel, Amanda E.; Wang, Cheng; Wang, Xiaoming; Wise, Steven M. Convergence analysis and error estimates for a second order accurate finite element method for the Cahn-Hilliard-Navier-Stokes system. (English) Zbl 06804021 Numer. Math. 137, No. 3, 495-534 (2017). MSC: 35K35 35K55 65M12 65M60 PDF BibTeX XML Cite \textit{A. E. Diegel} et al., Numer. Math. 137, No. 3, 495--534 (2017; Zbl 06804021) Full Text: DOI arXiv
Chen, Mingtao; Guo, Xinwei Global large solutions for a coupled compressible Navier-Stokes/Allen-Cahn system with initial vacuum. (English) Zbl 1375.35364 Nonlinear Anal., Real World Appl. 37, 350-373 (2017). MSC: 35Q35 35D35 35A09 35Q30 76N10 PDF BibTeX XML Cite \textit{M. Chen} and \textit{X. Guo}, Nonlinear Anal., Real World Appl. 37, 350--373 (2017; Zbl 1375.35364) Full Text: DOI
Hintermüller, Michael; Keil, Tobias; Wegner, Donat Optimal control of a semidiscrete Cahn-Hilliard-Navier-Stokes system with nonmatched fluid densities. (English) Zbl 1368.49022 SIAM J. Control Optim. 55, No. 3, 1954-1989 (2017). MSC: 49K20 35J87 90C46 76T10 49M25 PDF BibTeX XML Cite \textit{M. Hintermüller} et al., SIAM J. Control Optim. 55, No. 3, 1954--1989 (2017; Zbl 1368.49022) Full Text: DOI arXiv
Tachim Medjo, T. On the existence and uniqueness of solution to a stochastic 2D Cahn-Hilliard-Navier-Stokes model. (English) Zbl 1365.35235 J. Differ. Equations 263, No. 2, 1028-1054 (2017). Reviewer: Feng-Yu Wang (Swansea) MSC: 35R60 35Q35 60H15 76M35 86A05 PDF BibTeX XML Cite \textit{T. Tachim Medjo}, J. Differ. Equations 263, No. 2, 1028--1054 (2017; Zbl 1365.35235) Full Text: DOI
Jiang, Jie; Li, Yinghua; Liu, Chun Two-phase incompressible flows with variable density: an energetic variational approach. (English) Zbl 1361.35129 Discrete Contin. Dyn. Syst. 37, No. 6, 3243-3284 (2017). MSC: 35Q30 35Q35 76T99 35B40 35B32 35A15 35D30 35D35 PDF BibTeX XML Cite \textit{J. Jiang} et al., Discrete Contin. Dyn. Syst. 37, No. 6, 3243--3284 (2017; Zbl 1361.35129) Full Text: DOI
Fei, Mingwen Global sharp interface limit of the Hele-Shaw-Cahn-Hilliard system. (English) Zbl 1359.35151 Math. Methods Appl. Sci. 40, No. 3, 833-852 (2017). MSC: 35Q35 35B25 76T99 76D27 76S05 PDF BibTeX XML Cite \textit{M. Fei}, Math. Methods Appl. Sci. 40, No. 3, 833--852 (2017; Zbl 1359.35151) Full Text: DOI
Han, Daozhi A decoupled unconditionally stable numerical scheme for the Cahn-Hilliard-Hele-Shaw system. (English) Zbl 06760785 J. Sci. Comput. 66, No. 3, 1102-1121 (2016). MSC: 65M60 65M12 76T99 76D27 76S05 35J05 35Q35 PDF BibTeX XML Cite \textit{D. Han}, J. Sci. Comput. 66, No. 3, 1102--1121 (2016; Zbl 06760785) Full Text: DOI arXiv
Abels, Helmut; Schaubeck, Stefan Nonconvergence of the capillary stress functional for solutions of the convective Cahn-Hilliard equation. (English) Zbl 1371.35209 Shibata, Yoshihiro (ed.) et al., Mathematical fluid dynamics, present and future. Tokyo, Japan, November 11–14, 2014. Tokyo: Springer (ISBN 978-4-431-56455-3/hbk; 978-4-431-56457-7/ebook). Springer Proceedings in Mathematics & Statistics 183, 3-23 (2016). MSC: 35Q35 35R35 76D03 76D45 PDF BibTeX XML Cite \textit{H. Abels} and \textit{S. Schaubeck}, in: Mathematical fluid dynamics, present and future. Tokyo, Japan, November 11--14, 2014. Tokyo: Springer. 3--23 (2016; Zbl 1371.35209) Full Text: DOI
Gal, Ciprian G. On an inviscid model for incompressible two-phase flows with nonlocal interaction. (English) Zbl 1359.35128 J. Math. Fluid Mech. 18, No. 4, 659-677 (2016). MSC: 35Q30 45K05 37L30 76D03 76T99 PDF BibTeX XML Cite \textit{C. G. Gal}, J. Math. Fluid Mech. 18, No. 4, 659--677 (2016; Zbl 1359.35128) Full Text: DOI
Eleuteri, Michela; Rocca, Elisabetta; Schimperna, Giulio Existence of solutions to a two-dimensional model for nonisothermal two-phase flows of incompressible fluids. (English) Zbl 1360.35175 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 33, No. 6, 1431-1454 (2016). Reviewer: Marin I. Marin (Braşov) MSC: 35Q35 35K25 76D05 35D30 35B45 PDF BibTeX XML Cite \textit{M. Eleuteri} et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 33, No. 6, 1431--1454 (2016; Zbl 1360.35175) Full Text: DOI arXiv
Miranville, Alain; Temam, Roger On the Cahn-Hilliard-Oono-Navier-Stokes equations with singular potentials. (English) Zbl 1349.35171 Appl. Anal. 95, No. 12, 2609-2624 (2016). MSC: 35K55 35Q35 76D05 PDF BibTeX XML Cite \textit{A. Miranville} and \textit{R. Temam}, Appl. Anal. 95, No. 12, 2609--2624 (2016; Zbl 1349.35171) Full Text: DOI
Medjo, T. Tachim Robust control of a Cahn-Hilliard-Navier-Stokes model. (English) Zbl 1348.93134 Commun. Pure Appl. Anal. 15, No. 6, 2075-2101 (2016). MSC: 93C05 93B50 93C35 PDF BibTeX XML Cite \textit{T. T. Medjo}, Commun. Pure Appl. Anal. 15, No. 6, 2075--2101 (2016; Zbl 1348.93134) Full Text: DOI
Tachim-Medjo, Theodore Optimal control of a two-phase flow model with state constraints. (English) Zbl 1351.35242 Math. Control Relat. Fields 6, No. 2, 335-362 (2016). MSC: 35Q93 49J20 35A01 35A02 93C20 35Q35 35Q30 35B65 35B50 76D05 PDF BibTeX XML Cite \textit{T. Tachim-Medjo}, Math. Control Relat. Fields 6, No. 2, 335--362 (2016; Zbl 1351.35242) Full Text: DOI
Li, Yinghua; Ding, Shijin; Huang, Mingxia Blow-up criterion for an incompressible Navier-Stokes/Allen-Cahn system with different densities. (English) Zbl 1346.76195 Discrete Contin. Dyn. Syst., Ser. B 21, No. 5, 1507-1523 (2016). MSC: 76T10 35Q30 35B44 PDF BibTeX XML Cite \textit{Y. Li} et al., Discrete Contin. Dyn. Syst., Ser. B 21, No. 5, 1507--1523 (2016; Zbl 1346.76195) Full Text: DOI
Frigeri, Sergio; Gal, Ciprian G.; Grasselli, Maurizio On nonlocal Cahn-Hilliard-Navier-Stokes systems in two dimensions. (English) Zbl 1348.35171 J. Nonlinear Sci. 26, No. 4, 847-893 (2016). MSC: 35Q30 37L30 45K05 76D03 76T99 35D30 35D35 35B41 35Q35 76D05 PDF BibTeX XML Cite \textit{S. Frigeri} et al., J. Nonlinear Sci. 26, No. 4, 847--893 (2016; Zbl 1348.35171) Full Text: DOI arXiv
Gal, C. G.; Grasselli, Maurizio; Miranville, Alain Cahn-Hilliard-Navier-Stokes systems with moving contact lines. (English) Zbl 1372.35140 Calc. Var. Partial Differ. Equ. 55, No. 3, Paper No. 50, 47 p. (2016). MSC: 35K55 35Q35 76D05 35K41 PDF BibTeX XML Cite \textit{C. G. Gal} et al., Calc. Var. Partial Differ. Equ. 55, No. 3, Paper No. 50, 47 p. (2016; Zbl 1372.35140) Full Text: DOI
Abels, Helmut; Weber, Josef Stationary solutions for a Navier-Stokes/Cahn-Hilliard system with singular free energies. (English) Zbl 1338.35348 Amann, Herbert (ed.) et al., Recent developments of mathematical fluid mechanics. Proceedings of the international conference on mathematical fluid dynamics on the occasion of Yoshihiro Shibata’s 60th birthday, Nara, Japan, March, 5–9, 2013. Basel: Birkhäuser/Springer (ISBN 978-3-0348-0938-2/hbk; 978-3-0348-0939-9/ebook). Advances in Mathematical Fluid Mechanics, 25-41 (2016). MSC: 35Q35 PDF BibTeX XML Cite \textit{H. Abels} and \textit{J. Weber}, in: Recent developments of mathematical fluid mechanics. Proceedings of the international conference on mathematical fluid dynamics on the occasion of Yoshihiro Shibata's 60th birthday, Nara, Japan, March, 5--9, 2013. Basel: Birkhäuser/Springer. 25--41 (2016; Zbl 1338.35348) Full Text: DOI
Abels, Helmut; Diening, Lars; Terasawa, Yutaka Existence of weak solutions for a diffuse interface model of power-law type two-phase flows. (English) Zbl 1336.35282 Amann, Herbert (ed.) et al., Recent developments of mathematical fluid mechanics. Proceedings of the international conference on mathematical fluid dynamics on the occasion of Yoshihiro Shibata’s 60th birthday, Nara, Japan, March, 5–9, 2013. Basel: Birkhäuser/Springer (ISBN 978-3-0348-0938-2/hbk; 978-3-0348-0939-9/ebook). Advances in Mathematical Fluid Mechanics, 13-23 (2016). MSC: 35Q35 PDF BibTeX XML Cite \textit{H. Abels} et al., in: Recent developments of mathematical fluid mechanics. Proceedings of the international conference on mathematical fluid dynamics on the occasion of Yoshihiro Shibata's 60th birthday, Nara, Japan, March, 5--9, 2013. Basel: Birkhäuser/Springer. 13--23 (2016; Zbl 1336.35282) Full Text: DOI
Frigeri, Sergio; Rocca, Elisabetta; Sprekels, Jürgen Optimal distributed control of a nonlocal Cahn-Hilliard/Navier-Stokes system in two dimensions. (English) Zbl 1335.49010 SIAM J. Control Optim. 54, No. 1, 221-250 (2016). Reviewer: Claudia Simionescu-Badea (Wien) MSC: 49J20 49K20 49J50 35Q30 35R09 45K05 76D05 PDF BibTeX XML Cite \textit{S. Frigeri} et al., SIAM J. Control Optim. 54, No. 1, 221--250 (2016; Zbl 1335.49010) Full Text: DOI
Li, Fang; Zhong, Chengkui; You, Bo Finite-dimensional global attractor of the Cahn-Hilliard-Brinkman system. (English) Zbl 1329.35072 J. Math. Anal. Appl. 434, No. 1, 599-616 (2016). MSC: 35B41 35Q35 PDF BibTeX XML Cite \textit{F. Li} et al., J. Math. Anal. Appl. 434, No. 1, 599--616 (2016; Zbl 1329.35072) Full Text: DOI
Tierra, G.; Guillén-González, F. Numerical methods for solving the Cahn-Hilliard equation and its applicability to related energy-based models. (English) Zbl 1348.82080 Arch. Comput. Methods Eng. 22, No. 2, 269-289 (2015). MSC: 82C80 82C26 65M60 PDF BibTeX XML Cite \textit{G. Tierra} and \textit{F. Guillén-González}, Arch. Comput. Methods Eng. 22, No. 2, 269--289 (2015; Zbl 1348.82080) Full Text: DOI
Schimperna, Giulio; Rocca, Elisabetta; Eleuteri, Michela On a non-isothermal diffuse interface model for two-phase flows of incompressible fluids. (English) Zbl 1383.76082 Discrete Contin. Dyn. Syst. 35, No. 6, 2497-2522 (2015). MSC: 76D05 35Q35 76Txx PDF BibTeX XML Cite \textit{G. Schimperna} et al., Discrete Contin. Dyn. Syst. 35, No. 6, 2497--2522 (2015; Zbl 1383.76082) Full Text: DOI
Jiang, Jie; Wu, Hao; Zheng, Songmu Well-posedness and long-time behavior of a non-autonomous Cahn-Hilliard-Darcy system with mass source modeling tumor growth. (English) Zbl 1330.35039 J. Differ. Equations 259, No. 7, 3032-3077 (2015). MSC: 35B40 35B45 35Q92 35K35 35B41 PDF BibTeX XML Cite \textit{J. Jiang} et al., J. Differ. Equations 259, No. 7, 3032--3077 (2015; Zbl 1330.35039) Full Text: DOI arXiv
Gal, Ciprian G.; Medjo, T. Tachim Regularized family of models for incompressible Cahn-Hilliard two-phase flows. (English) Zbl 1319.35187 Nonlinear Anal., Real World Appl. 23, 94-122 (2015). MSC: 35Q35 76D03 76D05 35B41 35B65 PDF BibTeX XML Cite \textit{C. G. Gal} and \textit{T. T. Medjo}, Nonlinear Anal., Real World Appl. 23, 94--122 (2015; Zbl 1319.35187) Full Text: DOI
Wang, Changjia On the solvability of models for two-phase flows of viscous incompressible fluid with shear-dependent viscosity. (English) Zbl 1369.76011 Comput. Math. Appl. 68, No. 3, 132-139 (2014). MSC: 76D03 76D09 35Q35 35D30 PDF BibTeX XML Cite \textit{C. Wang}, Comput. Math. Appl. 68, No. 3, 132--139 (2014; Zbl 1369.76011) Full Text: DOI
Han, Daozhi; Sun, Dong; Wang, Xiaoming Two-phase flows in karstic geometry. (English) Zbl 1309.76204 Math. Methods Appl. Sci. 37, No. 18, 3048-3063 (2014). MSC: 76T10 76S05 PDF BibTeX XML Cite \textit{D. Han} et al., Math. Methods Appl. Sci. 37, No. 18, 3048--3063 (2014; Zbl 1309.76204) Full Text: DOI
Gal, Ciprian G.; Medjo, T. Tachim On a regularized family of models for homogeneous incompressible two-phase flows. (English) Zbl 1317.35172 J. Nonlinear Sci. 24, No. 6, 1033-1103 (2014). Reviewer: Ruxandra Stavre (Bucureşti) MSC: 35Q30 35Q31 35K58 35K59 37L30 35B41 76D05 76T10 35B65 PDF BibTeX XML Cite \textit{C. G. Gal} and \textit{T. T. Medjo}, J. Nonlinear Sci. 24, No. 6, 1033--1103 (2014; Zbl 1317.35172) Full Text: DOI arXiv
Gal, Ciprian G.; Medjo, T. Tachim Approximation of the trajectory attractor for a 3D model of incompressible two-phase-flows. (English) Zbl 1304.35487 Commun. Pure Appl. Anal. 13, No. 6, 2229-2252 (2014). MSC: 35Q30 35Q35 35B41 PDF BibTeX XML Cite \textit{C. G. Gal} and \textit{T. T. Medjo}, Commun. Pure Appl. Anal. 13, No. 6, 2229--2252 (2014; Zbl 1304.35487) Full Text: DOI
Han, Daozhi; Wang, Xiaoming; Wu, Hao Existence and uniqueness of global weak solutions to a Cahn-Hilliard-Stokes-Darcy system for two phase incompressible flows in karstic geometry. (English) Zbl 1302.35217 J. Differ. Equations 257, No. 10, 3887-3933 (2014). MSC: 35K61 76S05 76D07 35Q35 35D30 PDF BibTeX XML Cite \textit{D. Han} et al., J. Differ. Equations 257, No. 10, 3887--3933 (2014; Zbl 1302.35217) Full Text: DOI arXiv
Grasselli, Maurizio; Pražák, Dalibor Regularity results for a Cahn-Hilliard-Navier-Stokes system with shear dependent viscosity. (English) Zbl 1297.35185 Z. Anal. Anwend. 33, No. 3, 271-288 (2014). MSC: 35Q35 76A05 76D03 76T10 35D30 35B65 PDF BibTeX XML Cite \textit{M. Grasselli} and \textit{D. Pražák}, Z. Anal. Anwend. 33, No. 3, 271--288 (2014; Zbl 1297.35185) Full Text: DOI
Abels, Helmut; Diening, Lars; Terasawa, Yutaka Existence of weak solutions for a diffuse interface model of non-Newtonian two-phase flows. (English) Zbl 1297.35177 Nonlinear Anal., Real World Appl. 15, 149-157 (2014). MSC: 35Q35 76A05 76B03 35D30 PDF BibTeX XML Cite \textit{H. Abels} et al., Nonlinear Anal., Real World Appl. 15, 149--157 (2014; Zbl 1297.35177) Full Text: DOI arXiv
Liu, Yuning; Takahashi, Takéo Existence of global weak solutions for a phase – field model of a vesicle moving into a viscous incompressible fluid. (English) Zbl 1294.35068 Math. Methods Appl. Sci. 37, No. 10, 1507-1526 (2014). MSC: 35Q30 35Q35 35D30 76D03 76D05 76T10 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{T. Takahashi}, Math. Methods Appl. Sci. 37, No. 10, 1507--1526 (2014; Zbl 1294.35068) Full Text: DOI
Bosia, Stefano; Grasselli, Maurizio; Miranville, Alain On the longtime behavior of a 2D hydrodynamic model for chemically reacting binary fluid mixtures. (English) Zbl 1292.35056 Math. Methods Appl. Sci. 37, No. 5, 726-743 (2014). MSC: 35B41 35Q30 37L30 76T99 80A32 PDF BibTeX XML Cite \textit{S. Bosia} et al., Math. Methods Appl. Sci. 37, No. 5, 726--743 (2014; Zbl 1292.35056) Full Text: DOI
Wang, Xiaoming; Zhang, Zhifei Well-posedness of the Hele-Shaw-Cahn-Hilliard system. (English) Zbl 1291.35240 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 30, No. 3, 367-384 (2013). MSC: 35Q35 76D27 76S05 42B25 35B44 PDF BibTeX XML Cite \textit{X. Wang} and \textit{Z. Zhang}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 30, No. 3, 367--384 (2013; Zbl 1291.35240) Full Text: DOI arXiv
Abels, Helmut; Depner, Daniel; Garcke, Harald On an incompressible Navier-Stokes/Cahn-Hilliard system with degenerate mobility. (English) Zbl 1347.76052 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 30, No. 6, 1175-1190 (2013). MSC: 76T99 35Q30 35Q35 76D03 76D05 76D27 76D45 PDF BibTeX XML Cite \textit{H. Abels} et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 30, No. 6, 1175--1190 (2013; Zbl 1347.76052) Full Text: DOI arXiv
Frigeri, Sergio; Grasselli, Maurizio; Krejčí, Pavel Strong solutions for two-dimensional nonlocal Cahn-Hilliard-Navier-Stokes systems. (English) Zbl 1284.35312 J. Differ. Equations 255, No. 9, 2587-2614 (2013). MSC: 35Q30 37L30 45K05 76D03 76T99 35Q35 76D05 PDF BibTeX XML Cite \textit{S. Frigeri} et al., J. Differ. Equations 255, No. 9, 2587--2614 (2013; Zbl 1284.35312) Full Text: DOI arXiv
Abels, Helmut; Depner, Daniel; Garcke, Harald Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities. (English) Zbl 1273.76421 J. Math. Fluid Mech. 15, No. 3, 453-480 (2013). MSC: 76T99 35Q30 35Q35 76D03 76D05 76D27 76D45 PDF BibTeX XML Cite \textit{H. Abels} et al., J. Math. Fluid Mech. 15, No. 3, 453--480 (2013; Zbl 1273.76421) Full Text: DOI arXiv
Ding, Shijin; Li, Yinghua; Luo, Wanglong Global solutions for a coupled compressible Navier-Stokes/Allen-Cahn system in 1D. (English) Zbl 1284.35307 J. Math. Fluid Mech. 15, No. 2, 335-360 (2013). MSC: 35Q30 76N10 35A01 35D30 PDF BibTeX XML Cite \textit{S. Ding} et al., J. Math. Fluid Mech. 15, No. 2, 335--360 (2013; Zbl 1284.35307) Full Text: DOI
Bosia, Stefano Analysis of a Cahn-Hilliard-Ladyzhenskaya system with singular potential. (English) Zbl 1253.35116 J. Math. Anal. Appl. 397, No. 1, 307-321 (2013). MSC: 35Q35 35Q53 35D30 35B41 PDF BibTeX XML Cite \textit{S. Bosia}, J. Math. Anal. Appl. 397, No. 1, 307--321 (2013; Zbl 1253.35116) Full Text: DOI
Frigeri, Sergio; Grasselli, Maurizio Global and trajectory attractors for a nonlocal Cahn-Hilliard-Navier-Stokes system. (English) Zbl 1261.35105 J. Dyn. Differ. Equations 24, No. 4, 827-856 (2012). MSC: 35Q30 37L30 45K05 76T99 PDF BibTeX XML Cite \textit{S. Frigeri} and \textit{M. Grasselli}, J. Dyn. Differ. Equations 24, No. 4, 827--856 (2012; Zbl 1261.35105) Full Text: DOI arXiv
Colli, Pierluigi; Frigeri, Sergio; Grasselli, Maurizio Global existence of weak solutions to a nonlocal Cahn-Hilliard-Navier-Stokes system. (English) Zbl 1241.35155 J. Math. Anal. Appl. 386, No. 1, 428-444 (2012). Reviewer: Titus Petrila (Cluj-Napoca) MSC: 35Q35 35D30 76D05 76D50 35R09 PDF BibTeX XML Cite \textit{P. Colli} et al., J. Math. Anal. Appl. 386, No. 1, 428--444 (2012; Zbl 1241.35155) Full Text: DOI arXiv
Alt, Hans Wilhelm; Witterstein, Gabriele Distributional equation in the limit of phase transition for fluids. (English) Zbl 1245.82019 Interfaces Free Bound. 13, No. 4, 531-554 (2011). MSC: 82B26 35Q30 82B24 PDF BibTeX XML Cite \textit{H. W. Alt} and \textit{G. Witterstein}, Interfaces Free Bound. 13, No. 4, 531--554 (2011; Zbl 1245.82019) Full Text: DOI
Cherfils, Laurence; Miranville, Alain; Zelik, Sergey The Cahn-Hilliard equation with logarithmic potentials. (English) Zbl 1250.35129 Milan J. Math. 79, No. 2, 561-596 (2011). Reviewer: Athanasios Yannacopoulos (Athens) MSC: 35K67 35K55 35J60 80A22 35B40 35K35 35B41 PDF BibTeX XML Cite \textit{L. Cherfils} et al., Milan J. Math. 79, No. 2, 561--596 (2011; Zbl 1250.35129) Full Text: DOI
Gal, Ciprian G.; Grasselli, Maurizio Instability of two-phase flows: A lower bound on the dimension of the global attractor of the Cahn-Hilliard-Navier-Stokes system. (English) Zbl 1214.37055 Physica D 240, No. 7, 629-635 (2011). Reviewer: Boris V. Loginov (Ul’yanovsk) MSC: 37N10 37F35 76E15 76D05 PDF BibTeX XML Cite \textit{C. G. Gal} and \textit{M. Grasselli}, Physica D 240, No. 7, 629--635 (2011; Zbl 1214.37055) Full Text: DOI
Gal, Ciprian G.; Grasselli, Maurizio Trajectory attractors for binary fluid mixtures in 3D. (English) Zbl 1223.35079 Chin. Ann. Math., Ser. B 31, No. 5, 655-678 (2010). Reviewer: Athanasios Yannacopoulos (Athens) MSC: 35B41 35B40 35K55 35Q35 76D05 35Q30 PDF BibTeX XML Cite \textit{C. G. Gal} and \textit{M. Grasselli}, Chin. Ann. Math., Ser. B 31, No. 5, 655--678 (2010; Zbl 1223.35079) Full Text: DOI
Feireisl, Eduard; Petzeltová, Hana; Rocca, Elisabetta; Schimperna, Giulio Analysis of a phase-field model for two-phase compressible fluids. (English) Zbl 1200.76155 Math. Models Methods Appl. Sci. 20, No. 7, 1129-1160 (2010). Reviewer: Ruxandra Stavre (Bucureşti) MSC: 76N10 35Q30 76T99 PDF BibTeX XML Cite \textit{E. Feireisl} et al., Math. Models Methods Appl. Sci. 20, No. 7, 1129--1160 (2010; Zbl 1200.76155) Full Text: DOI
Abels, Helmut; Terasawa, Yutaka Non-homogeneous Navier-Stokes systems with order-parameter-dependent stresses. (English) Zbl 1303.76008 Math. Methods Appl. Sci. 33, No. 13, 1532-1544 (2010). MSC: 76D05 35Q30 35Q35 76D03 76T25 PDF BibTeX XML Cite \textit{H. Abels} and \textit{Y. Terasawa}, Math. Methods Appl. Sci. 33, No. 13, 1532--1544 (2010; Zbl 1303.76008) Full Text: DOI
Fan, Jishan; di Cristo, Michele; Jiang, Yu; Nakamura, Gen Inverse viscosity problem for the Navier-Stokes equation. (English) Zbl 1186.35240 J. Math. Anal. Appl. 365, No. 2, 750-757 (2010). MSC: 35R30 35Q30 35B35 35B45 76D05 76D03 PDF BibTeX XML Cite \textit{J. Fan} et al., J. Math. Anal. Appl. 365, No. 2, 750--757 (2010; Zbl 1186.35240) Full Text: DOI
Gal, Ciprian G.; Grasselli, Maurizio Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D. (English) Zbl 1184.35055 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27, No. 1, 401-436 (2010). MSC: 35B40 35B41 35K55 35Q35 37L30 76D05 76T99 PDF BibTeX XML Cite \textit{C. G. Gal} and \textit{M. Grasselli}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27, No. 1, 401--436 (2010; Zbl 1184.35055) Full Text: DOI
Abels, Helmut; Röger, Matthias Existence of weak solutions for a non-classical sharp interface model for a two-phase flow of viscous, incompressible fluids. (English) Zbl 1181.35343 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26, No. 6, 2403-2424 (2009). MSC: 35R35 35Q30 76D45 76T99 80A20 PDF BibTeX XML Cite \textit{H. Abels} and \textit{M. Röger}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26, No. 6, 2403--2424 (2009; Zbl 1181.35343) Full Text: DOI EuDML arXiv
Abels, Helmut Existence of weak solutions for a diffuse interface model for viscous, incompressible fluids with general densities. (English) Zbl 1165.76050 Commun. Math. Phys. 289, No. 1, 45-73 (2009). MSC: 76R50 35Q35 PDF BibTeX XML Cite \textit{H. Abels}, Commun. Math. Phys. 289, No. 1, 45--73 (2009; Zbl 1165.76050) Full Text: DOI
Abels, Helmut; Terasawa, Yutaka On Stokes operators with variable viscosity in bounded and unbounded domains. (English) Zbl 1172.35050 Math. Ann. 344, No. 2, 381-429 (2009). Reviewer: Milan Pokorný (Praha) MSC: 35Q30 76D07 47A60 47F05 47A10 PDF BibTeX XML Cite \textit{H. Abels} and \textit{Y. Terasawa}, Math. Ann. 344, No. 2, 381--429 (2009; Zbl 1172.35050) Full Text: DOI