Berselli, Luigi C.; Fagioli, Simone; Spirito, Stefano Suitable weak solutions of the Navier-Stokes equations constructed by a space-time numerical discretization. (English. French summary) Zbl 1414.35143 J. Math. Pures Appl. (9) 125, 189-208 (2019). MSC: 35Q30 76M10 76M20 76D05 PDF BibTeX XML Cite \textit{L. C. Berselli} et al., J. Math. Pures Appl. (9) 125, 189--208 (2019; Zbl 1414.35143) Full Text: DOI
Ortiz, Michael; Schmidt, Bernd; Stefanelli, Ulisse A variational approach to Navier-Stokes. (English) Zbl 1406.35237 Nonlinearity 31, No. 12, 5664-5682 (2018). MSC: 35Q30 76D05 35A15 35D30 35B65 49J40 PDF BibTeX XML Cite \textit{M. Ortiz} et al., Nonlinearity 31, No. 12, 5664--5682 (2018; Zbl 1406.35237) Full Text: DOI
Berselli, Luigi C.; Spirito, Stefano On the convergence of a fully discrete scheme of LES type to physically relevant solutions of the incompressible Navier-Stokes. (English) Zbl 1394.35315 Z. Angew. Math. Phys. 69, No. 3, Paper No. 61, 15 p. (2018). MSC: 35Q30 35A35 76M20 35D30 76D05 65N30 65N35 PDF BibTeX XML Cite \textit{L. C. Berselli} and \textit{S. Spirito}, Z. Angew. Math. Phys. 69, No. 3, Paper No. 61, 15 p. (2018; Zbl 1394.35315) Full Text: DOI
Brenier, Yann Approximation of a simple Navier-Stokes model by monotonic rearrangement. (English) Zbl 1286.35203 Discrete Contin. Dyn. Syst. 34, No. 4, 1285-1300 (2014). Reviewer: Il’ya Sh. Mogilevskij (Tver’) MSC: 35Q35 76N10 PDF BibTeX XML Cite \textit{Y. Brenier}, Discrete Contin. Dyn. Syst. 34, No. 4, 1285--1300 (2014; Zbl 1286.35203) Full Text: DOI