zbMATH — the first resource for mathematics

Tilted drifting jets over a zonally sloped topography: effects of vanishing eddy viscosity. (English) Zbl 1430.86003
Summary: Oceanic multiple jets are seen to possess spatio-temporal variability imposed by varying bottom topography resulting in jets that can drift and merge. The dynamics of multiple jets over a topographic zonal slope is studied in a two-layer quasi-geostrophic model. The jets tilt from the zonal direction and drift meridionally. In addition to the tilted jets, other large-scale spatial patterns are observed, which are extracted using the principal component analysis. The variances of these patterns are strongly influenced by the values of eddy viscosity and bottom friction parameters. The contribution of the tilted jets to the full flow field decreases with decreasing friction and viscosity parameters, and purely zonal large-scale modes, propagating in the meridional direction, populate the flow field. Linear stability analysis and two-dimensional kinetic-energy spectrum analysis suggest that the zonal modes gain energy from ambient eddies as well as from the tilted jets through nonlinear interactions. However, viscous dissipation and bottom friction tend to suppress the nonlinear interactions, which results in the inhibition of the upscale energy transfer from eddies to the zonal modes. These simulations suggest that, in the presence of topography, alternating jet patterns may be sustained through interactions among various large-scale modes. This is different from the classical zonal jet formation arguments, in which direct eddy forcing maintains the jets.

86A05 Hydrology, hydrography, oceanography
76U05 General theory of rotating fluids
76F05 Isotropic turbulence; homogeneous turbulence
Full Text: DOI
[1] Arbic, B. K.; Flierl, G. R., Baroclinically unstable geostrophic turbulence in the limits of strong and weak bottom Ekman friction: application to midocean eddies, J. Phys. Oceanogr., 34, 10, 2257-2273, (2004)
[2] Arbic, B. K.; Polzin, K. L.; Scott, R. B.; Richman, J. G.; Shriver, J. F., On eddy viscosity, energy cascades, and the horizontal resolution of gridded satellite altimeter products, J. Phys. Oceanogr., 43, 2, 283-300, (2013)
[3] Benilov, E. S., Baroclinic instability of two-layer flows over one-dimensional bottom topography, J. Phys. Oceanogr., 31, 8, 2019-2025, (2001)
[4] Berloff, P., On rectification of randomly forced flows, J. Mar. Res., 63, 3, 497-527, (2005)
[5] Berloff, P.; Kamenkovich, I., On spectral analysis of mesoscale eddies. Part I. Linear analysis, J. Phys. Oceanogr., 43, 12, 2505-2527, (2013)
[6] Berloff, P.; Kamenkovich, I., On spectral analysis of mesoscale eddies. Part II. Nonlinear analysis, J. Phys. Oceanogr., 43, 12, 2528-2544, (2013)
[7] Berloff, P.; Kamenkovich, I.; Pedlosky, J., A mechanism of formation of multiple zonal jets in the oceans, J. Fluid Mech., 628, 395-425, (2009) · Zbl 1181.76071
[8] Berloff, P.; Kamenkovich, I.; Pedlosky, J., A model of multiple zonal jets in the oceans: dynamical and kinematical analysis, J. Phys. Oceanogr., 39, 11, 2711-2734, (2009) · Zbl 1181.76071
[9] Berloff, P.; Karabasov, S.; Farrar, J. T.; Kamenkovich, I., On latency of multiple zonal jets in the oceans, J. Fluid Mech., 686, 534-567, (2011) · Zbl 1241.76427
[10] Boland, E.; Thompson, A. F.; Shuckburgh, E.; Haynes, P., The formation of nonzonal jets over sloped topography, J. Phys. Oceanogr., 42, 10, 1635-1651, (2012)
[11] Chen, C.; Kamenkovich, I., Effects of topography on baroclinic instability, J. Phys. Oceanogr., 43, 4, 790-804, (2013)
[12] Chen, C.; Kamenkovich, I.; Berloff, P., On the dynamics of flows induced by topographic ridges, J. Phys. Oceanogr., 45, 3, 927-940, (2015)
[13] Dritschel, D. G.; McIntyre, M. E., Multiple jets as PV staircases: the Phillips effect and the resilience of eddy-transport barriers, J. Atmos. Sci., 65, 3, 855-874, (2008)
[14] Galperin, B.; Nakano, H.; Huang, H. P.; Sukoriansky, S., The ubiquitous zonal jets in the atmospheres of giant planets and Earth’s oceans, Geophys. Res. Lett., 31, (2004)
[15] Galperin, B.; Sukoriansky, S.; Dikovskaya, N.; Read, P. L.; Yamazaki, Y. H.; Wordsworth, R., Anisotropic turbulence and zonal jets in rotating flows with a 𝛽-effect, Nonlinear Process. Geophys., 13, 1, 83-98, (2006)
[16] Hannachi, A.; Jolliffe, I. T.; Stephenson, D. B., Empirical orthogonal functions and related techniques in atmospheric science: a review, Intl J. Climatol., 27, 9, 1119-1152, (2007)
[17] Hart, J. E., Baroclinic instability over a slope. Part I. Linear theory, J. Phys. Oceanogr., 5, 4, 625-633, (1975)
[18] Hart, J. E., Baroclinic instability over a slope. Part II. Finite-amplitude theory, J. Phys. Oceanogr., 5, 4, 634-641, (1975)
[19] Jochum, M.; Danabasoglu, G.; Holland, M.; Kwon, Y.-O.; Large, W. G., Ocean viscosity and climate, J. Geophys. Res. Oceans, 113, (2008)
[20] Kamenkovich, I.; Berloff, P.; Pedlosky, J., Role of eddy forcing in the dynamics of multiple zonal jets in a model of the North Atlantic, J. Phys. Oceanogr., 39, 6, 1361-1379, (2009) · Zbl 1181.76071
[21] Karabasov, S. A.; Berloff, P.; Goloviznin, V. M., Cabaret in the ocean gyres, Ocean Model., 30, 2, 155-168, (2009)
[22] Khatri, H.; Berloff, P., A mechanism for jet drift over topography, J. Fluid Mech., 845, 392-416, (2018) · Zbl 1404.86019
[23] Khatri, H.; Berloff, P., Role of eddies in the maintenance of multiple jets embedded in eastward and westward baroclinic shears, Fluids, 3, 4, 91, (2018)
[24] Lee, S., Maintenance of multiple jets in a baroclinic flow, J. Atmos. Sci., 54, 13, 1726-1738, (1997)
[25] Maximenko, N. A.; Bang, B.; Sasaki, H., Observational evidence of alternating zonal jets in the world ocean, Geophys. Res. Lett., 32, L12607, (2005)
[26] Nakano, H.; Hasumi, H., A series of zonal jets embedded in the broad zonal flows in the Pacific obtained in eddy-permitting ocean general circulation models, J. Phys. Oceanogr., 35, 4, 474-488, (2005)
[27] Panetta, R. L., Zonal jets in wide baroclinically unstable regions: persistence and scale selection, J. Atmos. Sci., 50, 14, 2073-2106, (1993)
[28] Radko, T.; Kamenkovich, I., On the topographic modulation of large-scale eddying flows, J. Phys. Oceanogr., 47, 9, 2157-2172, (2017)
[29] Rhines, P. B., Waves and turbulence on a beta-plane, J. Fluid Mech., 69, 3, 417-443, (1975) · Zbl 0366.76043
[30] Rhines, P. B., Geostrophic turbulence, Annu. Rev. Fluid Mech., 11, 1, 401-441, (1979) · Zbl 0474.76054
[31] Rhines, P. B., Jets, Chaos, 4, 2, 313-339, (1994)
[32] Richards, K. J.; Maximenko, N. A.; Bryan, F. O.; Sasaki, H., Zonal jets in the pacific ocean, Geophys. Res. Lett., 33, L03605, (2006)
[33] Rudko, M. V.; Kamenkovich, I. V.; Iskadarani, M.; Mariano, A. J., Zonally elongated transient flows: phenomenology and sensitivity analysis, J. Geophys. Res. Oceans, 123, 6, 3982-4002, (2018)
[34] Savill, A. M., Recent developments in rapid-distortion theory, Annu. Rev. Fluid Mech., 19, 1, 531-573, (1987)
[35] Sokolov, S.; Rintoul, S. R., Multiple jets of the Antarctic Circumpolar Current south of Australia, J. Phys. Oceanogr., 37, 5, 1394-1412, (2007)
[36] Srinivasan, K.; Young, W. R., Zonostrophic instability, J. Atmos. Sci., 69, 5, 1633-1656, (2012)
[37] Stern, A.; Nadeau, L. P.; Holland, D., Instability and mixing of zonal jets along an idealized continental shelf break, J. Phys. Oceanogr., 45, 9, 2315-2338, (2015)
[38] Sukoriansky, S.; Dikovskaya, N.; Galperin, B., On the arrest of inverse energy cascade and the Rhines scale, J. Atmos. Sci., 64, 9, 3312-3327, (2007)
[39] Thompson, A. F., Jet formation and evolution in baroclinic turbulence with simple topography, J. Phys. Oceanogr., 40, 2, 257-278, (2010)
[40] Thompson, A. F.; Richards, K. J., Low frequency variability of southern ocean jets, J. Geophys. Res. Oceans, 116, C09022, (2011)
[41] Thompson, A. F.; Sallée, J., Jets and topography: jet transitions and the impact on transport in the antarctic circumpolar current, J. Phys. Oceanogr., 42, 6, 956-972, (2012)
[42] Thompson, A. F.; Young, W. R., Two-layer baroclinic eddy heat fluxes: zonal flows and energy balance, J. Atmos. Sci., 64, 9, 3214-3231, (2007)
[43] Vallis, G. K., Atmospheric and Oceanic Fluid Dynamics, (2017), Cambridge University Press · Zbl 1374.86002
[44] Vallis, G. K.; Maltrud, M. E., Generation of mean flows and jets on a beta plane and over topography, J. Phys. Oceanogr., 23, 7, 1346-1362, (1993)
[45] Van Sebille, E.; Kamenkovich, I.; Willis, J. K., Quasi-zonal jets in 3-D Argo data of the northeast Atlantic, Geophys. Res. Lett., 38, L02606, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.