zbMATH — the first resource for mathematics

A mechanism for jet drift over topography. (English) Zbl 1404.86019
Summary: The dynamics of multiple alternating oceanic jets has been studied in the presence of a simple bottom topography with constant slope in the zonal direction. A baroclinic quasi-geostrophic model forced with a horizontally uniform and vertically sheared background flow generates mesoscale eddies and jets that are tilted from the zonal direction and drift with constant speed. The governing dynamical equations are rewritten in a tilted frame of reference moving with the jets, and the cross-jet time-mean profiles of the linear and nonlinear stress terms are analysed. Here, the linear stress terms are present because of the zonally asymmetric topography. It is demonstrated that the linear dynamics controls the drift mechanism. Also, it is found that the drifting jets are directly forced by the imposed vertical shear, whereas the eddies oppose the jets, although this is limited to continuously forced dissipative systems. This role of the eddies is opposite to the one in the classical baroclinic model of stationary, zonally symmetric multiple jets. This is expected to be more generic in the ocean, which is zonally asymmetric nearly everywhere.

86A05 Hydrology, hydrography, oceanography
86-08 Computational methods for problems pertaining to geophysics
Full Text: DOI
[1] Abernathey, R.; Cessi, P., Topographic enhancement of eddy efficiency in baroclinic equilibration, J. Phys. Oceanogr., 44, 8, 2107-2126, (2014)
[2] Abernathey, R.; Marshall, J.; Mazloff, M.; Shuckburgh, E., Enhancement of mesoscale eddy stirring at steering levels in the Southern Ocean, J. Phys. Oceanogr., 40, 1, 170-184, (2010)
[3] Arbic, B. K.; Flierl, G. R., Effects of mean flow direction on energy, isotropy, and coherence of baroclinically unstable beta-plane geostrophic turbulence, J. Phys. Oceanogr., 34, 1, 77-93, (2004)
[4] Baldwin, M. P.; Rhines, P. B.; Huang, H. P.; Mcintyre, M. E., The jet-stream conundrum, Science, 315, 5811, 467-468, (2007)
[5] Barthel, A.; Hogg, A.; Waterman, S.; Keating, S., Jet – topography interactions affect energy pathways to the deep Southern Ocean, J. Phys. Oceanogr., 47, 7, 1799-1816, (2017)
[6] Beebe, R. F.; Ingersoll, A. P.; Hunt, G. E.; Mitchell, J. L.; Müller, J. P., Measurements of wind vectors, eddy momentum transports, and energy conversions in Jupiter’s atmosphere from Voyager 1 images, Geophys. Res. Lett., 7, 1, 1-4, (1980)
[7] Berloff, P., On dynamically consistent eddy fluxes, Dyn. Atmos. Oceans, 38, 3, 123-146, (2005)
[8] Berloff, P., On rectification of randomly forced flows, J. Mar. Res., 63, 3, 497-527, (2005)
[9] Berloff, P.; Kamenkovich, I., On spectral analysis of mesoscale eddies. Part I: linear analysis, J. Phys. Oceanogr., 43, 12, 2505-2527, (2013)
[10] Berloff, P.; Kamenkovich, I., On spectral analysis of mesoscale eddies. Part II: nonlinear analysis, J. Phys. Oceanogr., 43, 12, 2528-2544, (2013)
[11] Berloff, P.; Kamenkovich, I.; Pedlosky, J., A mechanism of formation of multiple zonal jets in the oceans, J. Fluid Mech., 628, 395-425, (2009) · Zbl 1181.76071
[12] Berloff, P.; Kamenkovich, I.; Pedlosky, J., A model of multiple zonal jets in the oceans: dynamical and kinematical analysis, J. Phys. Oceanogr., 39, 11, 2711-2734, (2009) · Zbl 1181.76071
[13] Berloff, P.; Karabasov, S.; Farrar, J. T.; Kamenkovich, I., On latency of multiple zonal jets in the oceans, J. Fluid Mech., 686, 534-567, (2011) · Zbl 1241.76427
[14] Boland, E.; Thompson, A. F.; Shuckburgh, E.; Haynes, P., The formation of nonzonal jets over sloped topography, J. Phys. Oceanogr., 42, 10, 1635-1651, (2012)
[15] Buckingham, C. E.; Cornillon, P. C., The contribution of eddies to striations in absolute dynamic topography, J. Geophys. Res. Oceans, 118, 1, 448-461, (2013)
[16] Chan, C. J.; Plumb, R. A.; Cerovecki, I., Annular modes in a multiple migrating zonal jet regime, J. Atmos. Sci., 64, 11, 4053-4068, (2007)
[17] Charney, J. C., Geostrophic turbulence, J. Atmos. Sci., 28, 1087-1095, (1971)
[18] Chelton, D. B.; Deszoeke, R. A.; Schlax, M. G.; El Naggar, K.; Siwertz, N., Geographical variability of the first baroclinic Rossby radius of deformation, J. Phys. Oceanogr., 28, 3, 433-460, (1998)
[19] Chemke, R.; Kaspi, Y., The latitudinal dependence of atmospheric jet scales and macroturbulent energy cascades, J. Atmos. Sci., 72, 10, 3891-3907, (2015)
[20] Chemke, R.; Kaspi, Y., Poleward migration of eddy-driven jets, J Adv. Model. Earth Syst., 7, 3, 1457-1471, (2015)
[21] Chen, C.; Kamenkovich, I., Effects of topography on baroclinic instability, J. Phys. Oceanogr., 43, 4, 790-804, (2013)
[22] Chen, C.; Kamenkovich, I.; Berloff, P., On the dynamics of flows induced by topographic ridges, J. Phys. Oceanogr., 45, 3, 927-940, (2015)
[23] Chen, C.; Kamenkovich, I.; Berloff, P., Eddy trains and striations in quasigeostrophic simulations and the ocean, J. Phys. Oceanogr., 46, 9, 2807-2825, (2016)
[24] Cho, J. Y. K.; Polvani, L. M., The emergence of jets and vortices in freely evolving, shallow-water turbulence on a sphere, Phys. Fluids, 8, 6, 1531-1552, (1996) · Zbl 1087.76057
[25] Connaughton, C. P.; Nadiga, B. T.; Nazarenko, S. V.; Quinn, B. E., Modulational instability of Rossby and drift waves and generation of zonal jets, J. Fluid Mech., 654, 207-231, (2010) · Zbl 1193.76059
[26] Constantinou, N. C.; Farrell, B. F.; Ioannou, P. J., Emergence and equilibration of jets in beta-plane turbulence: applications of stochastic structural stability theory, J. Atmos. Sci., 71, 5, 1818-1842, (2014)
[27] Cravatte, S.; Kessler, W. S.; Marin, F., Intermediate zonal jets in the tropical Pacific Ocean observed by Argo floats, J. Phys. Oceanogr., 42, 9, 1475-1485, (2012)
[28] Cravatte, S.; Kestenare, E.; Marin, F.; Dutrieux, P.; Firing, E., Subthermocline and intermediate zonal currents in the tropical Pacific Ocean: paths and vertical structure, J. Phys. Oceanogr., 47, 9, 2305-2324, (2017)
[29] Dritschel, D. G.; Mcintyre, M. E., Multiple jets as PV staircases: the Phillips effect and the resilience of eddy-transport barriers, J. Atmos. Sci., 65, 3, 855-874, (2008)
[30] Dunkerton, T. J.; Scott, R. K., A barotropic model of the angular momentum-conserving potential vorticity staircase in spherical geometry, J. Atmos. Sci., 65, 4, 1105-1136, (2008)
[31] Farrell, B. F.; Ioannou, P. J., Structure and spacing of jets in barotropic turbulence, J. Atmos. Sci., 64, 10, 3652-3665, (2007) · Zbl 1127.90042
[32] Gierasch, P. J.; Conrath, B. J.; Magalha, J. A., Zonal mean properties of Jupiter’s upper troposphere from Voyager infrared observations, Icarus, 67, 3, 456-483, (1986)
[33] Hannachi, A.; Jolliffe, I. T.; Stephenson, D. B., Empirical orthogonal functions and related techniques in atmospheric science: a review, Intl J. Climatol., 27, 9, 1119-1152, (2007)
[34] Hart, J. E., Baroclinic instability over a slope. Part I: linear theory, J. Phys. Oceanogr., 5, 4, 625-633, (1975)
[35] Hristova, H. G.; Pedlosky, J.; Spall, M. A., Radiating instability of a meridional boundary current, J. Phys. Oceanogr., 38, 10, 2294-2307, (2008)
[36] Huang, H. P.; Robinson, W. A., Two-dimensional turbulence and persistent zonal jets in a global barotropic model, J. Atmos. Sci., 55, 4, 611-632, (1998)
[37] Ingersoll, A. P.; Beebe, R. F.; Mitchell, J. L.; Garneau, G. W.; Yagi, G. M.; Müller, J. P., Interaction of eddies and mean zonal flow on Jupiter as inferred from Voyager 1 and 2 images, J. Geophys. Res. Space Phys., 86, A10, 8733-8743, (1981)
[38] Ingersoll, A. P.; Gierasch, P. J.; Banfield, D.; Vasavada, A. R.; Team, G. I., Moist convection as an energy source for the large-scale motions in Jupiter’s atmosphere, Nature, 403, 6770, 630-632, (2000)
[39] Kamenkovich, I.; Berloff, P.; Pedlosky, J., Role of eddy forcing in the dynamics of multiple zonal jets in a model of the North Atlantic, J. Phys. Oceanogr., 39, 6, 1361-1379, (2009) · Zbl 1181.76071
[40] Karabasov, S. A.; Berloff, P.; Goloviznin, V. M., Cabaret in the ocean gyres, Ocean Model., 30, 2, 155-168, (2009)
[41] Kramer, W.; Van Buren, M. G.; Clercx, H. J. H.; Van Heijst, G. J. F., 𝛽-plane turbulence in a basin with no-slip boundaries, Phys. Fluids, 18, 2, (2006) · Zbl 1185.76763
[42] Lu, J.; Speer, K., Topography, jets, and eddy mixing in the Southern Ocean, J. Mar. Res., 68, 3-1, 479-502, (2010)
[43] Maltrud, M. E.; Vallis, G. K., Energy spectra and coherent structures in forced two-dimensional and beta-plane turbulence, J. Fluid Mech., 228, 321-342, (1991)
[44] Marston, J. B.; Conover, E.; Schneider, T., Statistics of an unstable barotropic jet from a cumulant expansion, J. Atmos. Sci., 65, 6, 1955-1966, (2008)
[45] Maximenko, N. A.; Bang, B.; Sasaki, H., Observational evidence of alternating zonal jets in the world ocean, Geophys. Res. Lett., 32, L12607, (2005)
[46] Mcintyre, M. E., How well do we understand the dynamics of stratospheric warmings?, J. Meteorol. Soc. Japan II, 60, 1, 37-65, (1982)
[47] Melnichenko, O. V.; Maximenko, N. A.; Schneider, N.; Sasaki, H., Quasi-stationary striations in basin-scale oceanic circulation: vorticity balance from observations and eddy-resolving model, Ocean Dyn., 60, 3, 653-666, (2010)
[48] Nadiga, B. T., On zonal jets in oceans, Geophys. Res. Lett., 33, L12607, (2006)
[49] Nakano, H.; Hasumi, H., A series of zonal jets embedded in the broad zonal flows in the Pacific obtained in eddy-permitting ocean general circulation models, J. Phys. Oceanogr., 35, 4, 474-488, (2005)
[50] Panetta, R. L., Zonal jets in wide baroclinically unstable regions: persistence and scale selection, J. Atmos. Sci., 50, 14, 2073-2106, (1993)
[51] Qiu, B.; Chen, S.; Sasaki, H., Generation of the North Equatorial Undercurrent jets by triad baroclinic Rossby wave interactions, J. Phys. Oceanogr., 43, 12, 2682-2698, (2013)
[52] Read, P. L.; Conrath, B. J.; Fletcher, L. N.; Gierasch, P. J.; Simon-Miller, A. A.; Zuchowski, L. C., Mapping potential vorticity dynamics on Saturn: zonal mean circulation from Cassini and Voyager data, Planet. Space Sci., 57, 14, 1682-1698, (2009)
[53] Rhines, P. B., Waves and turbulence on a beta-plane, J. Fluid Mech., 69, 3, 417-443, (1975) · Zbl 0366.76043
[54] Richards, K. J.; Maximenko, N. A.; Bryan, F. O.; Sasaki, H., Zonal jets in the Pacific Ocean, Geophys. Res. Lett., 33, L03605, (2006)
[55] Scott, R. K.; Polvani, L. M., Forced-dissipative shallow-water turbulence on the sphere and the atmospheric circulation of the giant planets, J. Atmos. Sci., 64, 9, 3158-3176, (2007)
[56] Sinha, B.; Richards, K. J., Jet structure and scaling in Southern Ocean models, J. Phys. Oceanogr., 29, 6, 1143-1155, (1999)
[57] Smith, S., Eddy amplitudes in baroclinic turbulence driven by nonzonal mean flow: shear dispersion of potential vorticity, J. Phys. Oceanogr., 37, 4, 1037-1050, (2007)
[58] Sokolov, S.; Rintoul, S. R., Multiple jets of the Antarctic circumpolar current south of Australia, J. Phys. Oceanogr., 37, 5, 1394-1412, (2007)
[59] Srinivasan, K., Stochastically Forced Zonal Flows, (2013), University of California
[60] Srinivasan, K.; Young, W. R., Zonostrophic instability, J. Atmos. Sci., 69, 5, 1633-1656, (2012)
[61] Stern, A.; Nadeau, L. P.; Holland, D., Instability and mixing of zonal jets along an idealized continental shelf break, J. Phys. Oceanogr., 45, 9, 2315-2338, (2015)
[62] Sukoriansky, S.; Dikovskaya, N.; Galperin, B., On the arrest of inverse energy cascade and the Rhines scale, J. Atmos. Sci., 64, 9, 3312-3327, (2007)
[63] Thompson, A. F., Jet formation and evolution in baroclinic turbulence with simple topography, J. Phys. Oceanogr., 40, 2, 257-278, (2010)
[64] Thompson, A. F.; Naveira Garabato, A. C., Equilibration of the Antarctic circumpolar current by standing meanders, J. Phys. Oceanogr., 44, 7, 1811-1828, (2014)
[65] Thompson, A. F.; Richards, K. J., Low frequency variability of Southern Ocean jets, J. Geophys. Res. Oceans, 116, (2011)
[66] Thompson, A. F.; Young, W. R., Two-layer baroclinic eddy heat fluxes: zonal flows and energy balance, J. Atmos. Sci., 64, 9, 3214-3231, (2007)
[67] Tréguier, A. M.; Panetta, R. L., Multiple zonal jets in a quasigeostrophic model of the Antarctic circumpolar current, J. Phys. Oceanogr., 24, 11, 2263-2277, (1994)
[68] Vallis, G. K., Atmospheric and Oceanic Fluid Dynamics, (2017), Cambridge University Press · Zbl 1374.86002
[69] Vallis, G. K.; Maltrud, M. E., Generation of mean flows and jets on a beta plane and over topography, J. Phys. Oceanogr., 23, 7, 1346-1362, (1993)
[70] Van Sebille, E.; Kamenkovich, I.; Willis, J. K., Quasi-zonal jets in 3-D Argo data of the Northeast Atlantic, Geophys. Res. Lett., 38, (2011)
[71] Wang, J.; Spall, M. A.; Flierl, G. R.; Malanotte-Rizzoli, P., A new mechanism for the generation of quasi-zonal jets in the ocean, Geophys. Res. Lett., 39, (2012)
[72] Williams, G. P., Planetary circulations: 2. The Jovian quasi-geostrophic regime, J. Atmos. Sci., 36, 5, 932-969, (1979)
[73] Williams, G. P., Jovian dynamics. Part III: multiple, migrating, and equatorial jets, J. Atmos. Sci., 60, 10, 1270-1296, (2003)
[74] Young, R. M. B.; Read, P. L., Forward and inverse kinetic energy cascades in Jupiter’s turbulent weather layer, Nat. Phys., 13, 11, 1135, (2017)
[75] Youngs, M. K.; Thompson, A. F.; Lazar, A.; Richards, K., ACC meanders, energy transfer, and mixed barotropic – baroclinic instability, J. Phys. Oceanogr., 47, 6, 1291-1305, (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.