zbMATH — the first resource for mathematics

The structure of zonal jets in geostrophic turbulence. (English) Zbl 1275.76132
Summary: The structure of zonal jets arising in forced-dissipative, two-dimensional turbulent flow on the \({\beta}\)-plane is investigated using high-resolution, long-time numerical integrations, with particular emphasis on the late-time distribution of potential vorticity. The structure of the jets is found to depend in a simple way on a single non-dimensional parameter, which may be conveniently expressed as the ratio \({L}_{{Rh}}/{L}_{\varepsilon}\), where \({L}_{{Rh}} = \sqrt{U/{\beta}}\) and \({L}_{\varepsilon}= \mathop{(\varepsilon/{{\beta}}^{3})}\nolimits ^{1/5}\) are two natural length scales arising in the problem; here \(U\) may be taken as the r.m.s. velocity, \({\beta}\) is the background gradient of potential vorticity in the north-south direction, and \(\varepsilon\) is the rate of energy input by the forcing. It is shown that jet strength increases with \({L}_{{Rh}}/{L}_{\varepsilon}\), with the limiting case of the potential vorticity staircase, comprising a monotonic, piecewise-constant profile in the north-south direction, being approached for \({L}_{{Rh}}/{L}_{\varepsilon}{\sim} O(10)\). At lower values, eddies created by the forcing become sufficiently intense to continually disrupt the steepening of potential vorticity gradients in the jet cores, preventing strong jets from developing. Although detailed features such as the regularity of jet spacing and intensity are found to depend on the spectral distribution of the forcing, the approach of the staircase limit with increasing \({L}_{{Rh}}/{L}_{\varepsilon}\) is robust across a variety of different forcing types considered.

76F25 Turbulent transport, mixing
76U05 General theory of rotating fluids
86A05 Hydrology, hydrography, oceanography
Full Text: DOI
[1] DOI: 10.1007/978-94-007-0360-5_20 · doi:10.1007/978-94-007-0360-5_20
[2] DOI: 10.1175/JAS4003.1 · doi:10.1175/JAS4003.1
[3] DOI: 10.1017/S0022112075001504 · Zbl 0366.76043 · doi:10.1017/S0022112075001504
[4] Phillips, Deep-Sea Res. 19 pp 79– (1972)
[5] Peltier, Meteorology at the Millennium (2002)
[6] DOI: 10.1175/1520-0469(1993)050&lt;2073:ZJIWBU&gt;2.0.CO;2 · doi:10.1175/1520-0469(1993)050<2073:ZJIWBU>2.0.CO;2
[7] DOI: 10.1175/2007JAS2223.1 · doi:10.1175/2007JAS2223.1
[8] DOI: 10.5194/adgeo-15-47-2008 · doi:10.5194/adgeo-15-47-2008
[9] DOI: 10.1098/rsta.2010.0306 · Zbl 1219.85007 · doi:10.1098/rsta.2010.0306
[10] McIntyre, J. Meteorol. Soc. Japan 60 pp 37– (1982) · doi:10.2151/jmsj1965.60.1_37
[11] DOI: 10.1016/j.jcp.2009.01.015 · Zbl 1159.76031 · doi:10.1016/j.jcp.2009.01.015
[12] DOI: 10.1146/annurev.aa.31.090193.002515 · doi:10.1146/annurev.aa.31.090193.002515
[13] DOI: 10.1175/2007JAS2227.1 · doi:10.1175/2007JAS2227.1
[14] Maltrud, J. Fluid Mech. 228 pp 321– (1991)
[15] DOI: 10.1063/1.1327594 · Zbl 1184.76235 · doi:10.1063/1.1327594
[16] DOI: 10.1016/j.jcp.2010.03.048 · Zbl 1310.76124 · doi:10.1016/j.jcp.2010.03.048
[17] DOI: 10.1029/2004GL019691 · doi:10.1029/2004GL019691
[18] DOI: 10.1002/qj.49712354015 · doi:10.1002/qj.49712354015
[19] DOI: 10.1016/j.jcp.2009.05.025 · Zbl 1261.86002 · doi:10.1016/j.jcp.2009.05.025
[20] DOI: 10.1016/0167-7977(89)90004-X · doi:10.1016/0167-7977(89)90004-X
[21] DOI: 10.1017/jfm.2011.345 · Zbl 1241.76427 · doi:10.1017/jfm.2011.345
[22] DOI: 10.1126/science.1131375 · doi:10.1126/science.1131375
[23] DOI: 10.1175/1520-0469(1978)035&lt;1399:PCBROJ&gt;2.0.CO;2 · doi:10.1175/1520-0469(1978)035<1399:PCBROJ>2.0.CO;2
[24] DOI: 10.1017/CBO9780511790447 · doi:10.1017/CBO9780511790447
[25] DOI: 10.1175/JAS4013.1 · doi:10.1175/JAS4013.1
[26] Saffman, Stud. Appl. Maths 50 pp 377– (1971) · Zbl 0237.76029 · doi:10.1002/sapm1971504377
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.