×

zbMATH — the first resource for mathematics

Aggregation of autoregressive random fields and anisotropic long-range dependence. (English) Zbl 1356.60082
The paper attempts a systematic study of anisotropic distributional long-range dependence, by exhibiting some natural classes of random fields whose partial sums tend to the operator scaling random field.

MSC:
60G60 Random fields
60E07 Infinitely divisible distributions; stable distributions
60F05 Central limit and other weak theorems
60G10 Stationary stochastic processes
Software:
longmemo
PDF BibTeX XML Cite
Full Text: DOI Euclid arXiv
References:
[1] Albeverio, S., Molchanov, S.A. and Surgailis, D. (1994). Stratified structure of the Universe and Burgers’ equation - a probabilistic approach. Probab. Theory Related Fields 100 457-484. · Zbl 0810.60058 · doi:10.1007/BF01268990
[2] Anh, V.V., Angulo, J.M. and Ruiz-Medina, M.D. (1999). Possible long-range dependence in fractional random fields. J. Statist. Plann. Inference 80 95-110. · Zbl 1039.62090 · doi:10.1016/S0378-3758(98)00244-4
[3] Anh, V.V., Leonenko, N.N. and Ruiz-Medina, M.D. (2013). Macroscaling limit theorems for filtered spatiotemporal random fields. Stoch. Anal. Appl. 31 460-508. · Zbl 1327.62095 · doi:10.1080/07362994.2013.777280
[4] Ayache, A., Leger, S. and Pontier, M. (2002). Drap brownien fractionnaire. Potential Anal. 17 31-43. · Zbl 1014.60057 · doi:10.1023/A:1015260803576
[5] Beran, J., Feng, Y., Ghosh, S. and Kulik, R. (2013). Long-Memory Processes : Probabilistic Properties and Statistical Methods . Heidelberg: Springer. · Zbl 1282.62187 · doi:10.1007/978-3-642-35512-7
[6] Bhattacharyya, B.B., Richardson, G.D. and Franklin, L.A. (1997). Asymptotic inference for near unit roots in spatial autoregression. Ann. Statist. 25 1709-1724. · Zbl 0890.62018 · doi:10.1214/aos/1031594738
[7] Biermé, H., Meerschaert, M.M. and Scheffler, H.-P. (2007). Operator scaling stable random fields. Stochastic Process. Appl. 117 312-332. · Zbl 1111.60033 · doi:10.1016/j.spa.2006.07.004
[8] Celov, D., Leipus, R. and Philippe, A. (2007). Time series aggregation, disaggregation, and long memory. Liet. Mat. Rink. 47 466-481. · Zbl 05521796
[9] Clausel, M. and Vedel, B. (2011). Explicit construction of operator scaling Gaussian random fields. Fractals 19 101-111. · Zbl 1233.60027 · doi:10.1142/S0218348X11005208
[10] Cox, D.R. (1984). Long-range dependence: A review. In Statistics : An Appraisal (H.A. David and H.T. David, eds.) 55-74. Iowa: Iowa State Univ. Press.
[11] Dehling, H. and Philipp, W. (2002). Empirical process techniques for dependent data. In Empirical Process Techniques for Dependent Data (H. Dehling, T. Mikosch and M. Sørensen, eds.) 3-113. Boston, MA: Birkhäuser. · Zbl 1021.62036 · doi:10.1007/978-1-4612-0099-4_1
[12] Dobrushin, R.L. (1979). Gaussian and their subordinated self-similar random generalized fields. Ann. Probab. 7 1-28. · Zbl 0392.60039 · doi:10.1214/aop/1176995145
[13] Dobrushin, R.L. and Major, P. (1979). Non-central limit theorems for nonlinear functionals of Gaussian fields. Z. Wahrsch. Verw. Gebiete 50 27-52. · Zbl 0397.60034 · doi:10.1007/BF00535673
[14] Dombry, C. and Kaj, I. (2011). The on-off network traffic model under intermediate scaling. Queueing Syst. 69 29-44. · Zbl 1235.60121 · doi:10.1007/s11134-011-9231-4
[15] Doukhan, P. (2003). Models, inequalities, and limit theorems for stationary sequences. In Theory and Applications of Long-Range Dependence (P. Doukhan, G. Oppenheim and M.S. Taqqu, eds.) 43-100. Boston, MA: Birkhäuser. · Zbl 1032.62081
[16] Doukhan, P., Lang, G. and Surgailis, D. (2002). Asymptotics of weighted empirical processes of linear fields with long-range dependence. Ann. Inst. Henri Poincaré Probab. Stat. 38 879-896. · Zbl 1016.60059 · doi:10.1016/S0246-0203(02)01139-1 · numdam:AIHPB_2002__38_6_879_0 · eudml:77746
[17] Doukhan, P., Oppenheim, G. and Taqqu, M.S., eds. (2003). Theory and Applications of Long-Range Dependence . Boston, MA: Birkhäuser. · Zbl 1005.00017
[18] Feller, W. (1966). An Introduction to Probability Theory and Its Applications. Vol. II . New York: Wiley. · Zbl 0138.10207
[19] Gaigalas, R. (2006). A Poisson bridge between fractional Brownian motion and stable Lévy motion. Stochastic Process. Appl. 116 447-462. · Zbl 1087.60080 · doi:10.1016/j.spa.2005.10.003
[20] Gaigalas, R. and Kaj, I. (2003). Convergence of scaled renewal processes and a packet arrival model. Bernoulli 9 671-703. · Zbl 1043.60077 · doi:10.3150/bj/1066223274 · euclid:bj/1066223274
[21] Giraitis, L., Koul, H.L. and Surgailis, D. (2012). Large Sample Inference for Long Memory Processes . London: Imperial College Press. · Zbl 1279.62016
[22] Giraitis, L., Leipus, R. and Surgailis, D. (2009). ARCH(\(\infty\)) models and long memory properties. In Handbook of Financial Time Series (T.G. Andersen, R.A. Davis, J.-P. Kreiss and T. Mikosch, eds.) 71-84. Berlin: Springer. · Zbl 1178.91160 · doi:10.1007/978-3-540-71297-8_3
[23] Giraitis, L., Leipus, R. and Surgailis, D. (2010). Aggregation of the random coefficient \(\mathrm{GLARCH}(1,1)\) process. Econometric Theory 26 406-425. · Zbl 1202.62116 · doi:10.1017/S026646660910004X
[24] Gonçalves, E. and Gouriéroux, C. (1988). Agrégation de processus autorégressifs d’ordre \(1\). Ann. Économ. Statist. 12 127-149.
[25] Gradshteyn, I.S. and Ryzhik, I.M. (1962). In Tables of Integrals , Sums , Series and Products . Moscow: Fizmatgiz.
[26] Granger, C.W.J. (1980). Long memory relationships and the aggregation of dynamic models. J. Econometrics 14 227-238. · Zbl 0466.62108 · doi:10.1016/0304-4076(80)90092-5
[27] Guo, H., Lim, C.Y. and Meerschaert, M.M. (2009). Local Whittle estimator for anisotropic random fields. J. Multivariate Anal. 100 993-1028. · Zbl 1167.62465 · doi:10.1016/j.jmva.2008.10.002
[28] Hult, H. and Samorodnitsky, G. (2008). Tail probabilities for infinite series of regularly varying random vectors. Bernoulli 14 838-864. · Zbl 1158.60325 · doi:10.3150/08-BEJ125 · arxiv:math/0702112
[29] Itô, K. and McKean, H.P. Jr. (1974). Diffusion Processes and Their Sample Paths . Berlin: Springer.
[30] Kazakevičius, V., Leipus, R. and Viano, M.-C. (2004). Stability of random coefficient ARCH models and aggregation schemes. J. Econometrics 120 139-158. · Zbl 1282.62198 · doi:10.1016/S0304-4076(03)00209-4
[31] Lamperti, J. (1962). Semi-stable stochastic processes. Trans. Amer. Math. Soc. 104 62-78. · Zbl 0286.60017 · doi:10.2307/1993933
[32] Lavancier, F. (2007). Invariance principles for non-isotropic long memory random fields. Stat. Inference Stoch. Process. 10 255-282. · Zbl 1143.62058 · doi:10.1007/s11203-006-9001-9
[33] Lavancier, F. (2011). Aggregation of isotropic autoregressive fields. J. Statist. Plann. Inference 141 3862-3866. · Zbl 1236.62126 · doi:10.1016/j.jspi.2011.06.003
[34] Lavancier, F., Leipus, R. and Surgailis, D. (2014). Anisotropic long-range dependence and aggregation of space-time models.
[35] Leonenko, N. and Olenko, A. (2013). Tauberian and Abelian theorems for long-range dependent random fields. Methodol. Comput. Appl. Probab. 15 715-742. · Zbl 1307.60068 · doi:10.1007/s11009-012-9276-9
[36] Leonenko, N.N. (1999). Random Fields with Singular Spectrum . Dordrecht: Kluwer. · Zbl 0963.60048
[37] Leonenko, N.N., Ruiz-Medina, M.D. and Taqqu, M.S. (2011). Fractional elliptic, hyperbolic and parabolic random fields. Electron. J. Probab. 16 1134-1172. · Zbl 1231.60045 · doi:10.1214/EJP.v16-891 · emis:journals/EJP-ECP/_ejpecp/viewarticleccb0.html
[38] Leonenko, N.N. and Taufer, E. (2013). Disaggregation of spatial autoregressive processes. Spatial Statist. 3 1-20.
[39] Mikosch, T., Resnick, S., Rootzén, H. and Stegeman, A. (2002). Is network traffic approximated by stable Lévy motion or fractional Brownian motion? Ann. Appl. Probab. 12 23-68. · Zbl 1021.60076 · doi:10.1214/aoap/1015961155
[40] Oppenheim, G. and Viano, M.-C. (2004). Aggregation of random parameters Ornstein-Uhlenbeck or AR processes: Some convergence results. J. Time Series Anal. 25 335-350. · Zbl 1064.60066 · doi:10.1111/j.1467-9892.2004.01775.x
[41] Philippe, A., Puplinskaite, D. and Surgailis, D. (2014). Contemporaneous aggregation of triangular array of random-coefficient AR(1) processes. J. Time Series Anal. 35 16-39. · Zbl 1301.62092 · doi:10.1111/jtsa.12045
[42] Pilipauskaitė, V. and Surgailis, D. (2014). Joint temporal and contemporaneous aggregation of random-coefficient AR(1) processes. Stochastic Process. Appl. 124 1011-1035. · Zbl 1400.62194 · doi:10.1016/j.spa.2013.10.004
[43] Puplinskaitė, D. and Surgailis, D. (2009). Aggregation of random-coefficient AR(1) process with infinite variance and common innovations. Lith. Math. J. 49 446-463. · Zbl 1194.60026 · doi:10.1007/s10986-009-9060-x
[44] Puplinskaitė, D. and Surgailis, D. (2010). Aggregation of a random-coefficient \(\mathrm{AR}(1)\) process with infinite variance and idiosyncratic innovations. Adv. Appl. Probab. 42 509-527. · Zbl 1191.62154 · doi:10.1239/aap/1275055240
[45] Puplinskaitė, D. and Surgailis, D. (2015). Scaling transition for long-range dependent Gaussian random fields. Stochastic Process. Appl. 125 2256-2271. · Zbl 1317.60062 · doi:10.1016/j.spa.2014.12.011
[46] Samorodnitsky, G. and Taqqu, M.S. (1994). Stable Non-Gaussian Random Processes. Stochastic Modeling . New York: Chapman & Hall. · Zbl 0925.60027
[47] Surgailis, D. (1982). Domains of attraction of self-similar multiple integrals. Litovsk. Mat. Sb. 22 185-201. · Zbl 0515.60057
[48] Surgailis, D., Rosiński, J., Mandrekar, V. and Cambanis, S. (1992). Stable generalized moving averages. Preprint, Univ. North Carolina.
[49] Surgailis, D., Rosiński, J., Mandrekar, V. and Cambanis, S. (1993). Stable mixed moving averages. Probab. Theory Related Fields 97 543-558. · Zbl 0794.60026 · doi:10.1007/BF01192963
[50] von Bahr, B. and Esseen, C.-G. (1965). Inequalities for the \(r\)th absolute moment of a sum of random variables, \(1\leq r\leq 2\). Ann. Math. Statist 36 299-303. · Zbl 0134.36902 · doi:10.1214/aoms/1177700291
[51] Zaffaroni, P. (2004). Contemporaneous aggregation of linear dynamic models in large economies. J. Econometrics 120 75-102. · Zbl 1282.91263 · doi:10.1016/S0304-4076(03)00207-0
[52] Zaffaroni, P. (2007). Aggregation and memory of models of changing volatility. J. Econometrics 136 237-249. · Zbl 1418.62360 · doi:10.1016/j.jeconom.2006.03.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.