Rump, Wolfgang The acyclic closure of an exact category and its triangulation. (English) Zbl 1451.18022 J. Algebra 565, 402-440 (2021). Reviewer: Panyue Zhou (Yueyang) MSC: 18E10 18G80 18G35 18E35 16G50 16H20 PDF BibTeX XML Cite \textit{W. Rump}, J. Algebra 565, 402--440 (2021; Zbl 1451.18022) Full Text: DOI
Muro, Fernando The first obstructions to enhancing a triangulated category. (English) Zbl 07242463 Math. Z. 296, No. 1-2, 719-759 (2020). MSC: 18E30 16E40 18G50 18G60 18E30 16G70 PDF BibTeX XML Cite \textit{F. Muro}, Math. Z. 296, No. 1--2, 719--759 (2020; Zbl 07242463) Full Text: DOI
Dubey, Umesh V.; Mallick, Vivek Mohan On the differential graded Eilenberg-Moore construction. (English) Zbl 1451.14002 J. Algebra 541, 174-218 (2020). MSC: 14A22 18A30 18G80 55U35 PDF BibTeX XML Cite \textit{U. V. Dubey} and \textit{V. M. Mallick}, J. Algebra 541, 174--218 (2020; Zbl 1451.14002) Full Text: DOI
Kaledin, D. How to glue derived categories. (English) Zbl 1435.18017 Bull. Math. Sci. 8, No. 3, 477-602 (2018). Reviewer: Tanya Srivastava (Klosterneuburg) MSC: 18G80 18G35 18N60 55U35 PDF BibTeX XML Cite \textit{D. Kaledin}, Bull. Math. Sci. 8, No. 3, 477--602 (2018; Zbl 1435.18017) Full Text: DOI
Gheorghe, Bogdan The motivic cofiber of \(\tau\). (English) Zbl 1407.55007 Doc. Math. 23, 1077-1127 (2018). Reviewer: Geoffrey Powell (Angers) MSC: 55S10 14F42 55P43 PDF BibTeX XML Cite \textit{B. Gheorghe}, Doc. Math. 23, 1077--1127 (2018; Zbl 1407.55007) Full Text: DOI arXiv
Kaledin, D. Bokstein homomorphism as a universal object. (English) Zbl 1431.16021 Adv. Math. 324, 267-325 (2018). MSC: 16S10 18G90 13F35 16S80 PDF BibTeX XML Cite \textit{D. Kaledin}, Adv. Math. 324, 267--325 (2018; Zbl 1431.16021) Full Text: DOI arXiv
Canonaco, Alberto; Stellari, Paolo A tour about existence and uniqueness of dg enhancements and lifts. (English) Zbl 1399.14007 J. Geom. Phys. 122, 28-52 (2017). MSC: 14F05 18E10 18E30 PDF BibTeX XML Cite \textit{A. Canonaco} and \textit{P. Stellari}, J. Geom. Phys. 122, 28--52 (2017; Zbl 1399.14007) Full Text: DOI
Fiorenza, Domenico; Loregiàn, Fosco \(t\)-structures are normal torsion theories. (English) Zbl 1345.18011 Appl. Categ. Struct. 24, No. 2, 181-208 (2016). Reviewer: Simion Sorin Breaz (Cluj-Napoca) MSC: 18E30 18E35 18A40 PDF BibTeX XML Cite \textit{D. Fiorenza} and \textit{F. Loregiàn}, Appl. Categ. Struct. 24, No. 2, 181--208 (2016; Zbl 1345.18011) Full Text: DOI
Groth, Moritz; Šťovíček, Jan Abstract representation theory of Dynkin quivers of type \(A\). (English) Zbl 1345.55005 Adv. Math. 293, 856-941 (2016). Reviewer: Martin Frankland (Osnabrück) MSC: 55U35 16E35 18E30 55U40 PDF BibTeX XML Cite \textit{M. Groth} and \textit{J. Šťovíček}, Adv. Math. 293, 856--941 (2016; Zbl 1345.55005) Full Text: DOI arXiv
Bergh, Petter Andreas; Jasso, Gustavo; Thaule, Marius Higher \(n\)-angulations from local rings. (English) Zbl 1371.18009 J. Lond. Math. Soc., II. Ser. 93, No. 1, 123-142 (2016). Reviewer: Septimiu Crivei (Cluj-Napoca) MSC: 18E30 13Hxx PDF BibTeX XML Cite \textit{P. A. Bergh} et al., J. Lond. Math. Soc., II. Ser. 93, No. 1, 123--142 (2016; Zbl 1371.18009) Full Text: DOI arXiv
Bentmann, Rasmus Homotopy-theoretic E-theory and \(n\)-order. (English) Zbl 1348.18015 J. Homotopy Relat. Struct. 9, No. 2, 455-463 (2014). MSC: 18E30 19K35 46L80 55P43 16E35 PDF BibTeX XML Cite \textit{R. Bentmann}, J. Homotopy Relat. Struct. 9, No. 2, 455--463 (2014; Zbl 1348.18015) Full Text: DOI arXiv