zbMATH — the first resource for mathematics

Effect of contact stiffness modulation in contact-mode AFM under subharmonic excitation. (English) Zbl 1308.74115
Summary: We report on the effect of fast contact stiffness modulation on frequency response to 2:1 subharmonic resonance in contact-mode atomic force microscopy. The model of the contact-mode dynamic between the tip of the microbeam and the moving surface consists of a lumped single degree of freedom Hertzian contact oscillator. Perturbation methods are applied to obtain the frequency response of the slow dynamic of the system. We focus on the effect of the amplitude and the frequency of the modulation on the nonlinear characteristic of the contact stiffness, the jump phenomenon and the shift in the frequency response of the subharmonic. We also show the effect of the contact stiffness modulation on the interval of the unstable trivial solution which is directly correlated to the depth of the jump. The obtained results can directly influence the material properties and the loss of contact between the tip and the sample.

74M15 Contact in solid mechanics
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34D15 Singular perturbations of ordinary differential equations
Full Text: DOI
[1] Binnig, G.; Quate, F.; Gerber, C., Atomic force microscope, Phys Rev Lett, 56, 930-933, (1986)
[2] Sabot, J.; Krempf, P.; Janolin, C., Nonlinear vibrations of a sphere plane contact excited by a normal load, J Sound Vib, 214, 359-375, (1998)
[3] Perret-Liaudet, J.; Rigaud, E., Experiments and numerical results on non-linear vibrations of an impacting Hertzian contact. part 1: harmonic excitation, J Sound Vib, 265, 289-307, (2003)
[4] Perret-Liaudet, J.; Rigaud, E., Response of an impacting Hertzian contact to an order-2 subharmonic excitation: theory and experiments, J Sound Vib, 296, 319-333, (2006)
[5] Bichri, A.; Belhaq, M.; Perret-Liaudet, J., Control of vibroimpact dynamics of a single-sided Hertzian contact forced oscillator, Nonlinear Dyn, 63, 51-60, (2010) · Zbl 1215.70016
[6] Bichri, A.; Belhaq, M., Control of a forced impacting hertzien contact oscillator near-subharmonic and superharmonic of order 2, Comput Nonlinear Dyn, 7, 011003, (2011)
[7] Blekhman, I. I., Vibrational mechanics-nonlinear dynamic effects, general approach, application, (2000), World Scientific Singapore
[8] Thomsen, J. J., Vibrations and stability: advanced theory, analysis, and tools, ((2003), Springer Berlin)
[9] Belhaq, M.; Fahsi, A., Hysteresis suppression for primary and subharmonic 3:1 resonances using fast excitation, Nonlinear Dyn, 57, 275-287, (2009) · Zbl 1176.70021
[10] Fahsi, A.; Belhaq, M., Effect of fast harmonic excitation on frequency-locking in a Van der pol – mathieu – duffing oscillator, Commun Nonlinear Sci Numer Simul, 14, 244-253, (2009)
[11] Lakrad, F.; Belhaq, M., Suppression of pull-in instability in MEMS using a high-frequency actuation, Commun Nonlinear Sci Numer Simul, 15, 3640-3646, (2010)
[12] Lakrad, F.; Belhaq, M., Suppression of pull-in in a microstructure actuated by mechanical shocks and electrostatic forces, Int J Non-Linear Mech, 46, 407-414, (2011)
[13] Turner, A., Non linear vibrations of a beams with cantilever hertzien boundary conditions, J Sound Vib, 275, 177-191, (2004)
[14] Nayfeh, A. H.; Mook, D. T., Nonlinear oscillations, (1979), Wiley New York
[15] Nayfeh, A. H., Introduction to perturbation techniques, (1981), Wiley New York · Zbl 0449.34001
[16] Kirrou I, Belhaq M. Frequency shift and hysteresis suppression in contact-mode AFM using contact stiffness modulation, in: MATEC Web of Conferences 2012 (1) 04003. DOI:1051/matecconf/20120104003. · Zbl 1308.74115
[17] Santos, S.; Barcons, V.; Verdaguer, A.; Chiesa, M., Subharmonic excitation in amplitude modulation atomic force microscopy in the presence of adsorbed water layers, J Appl Phys, 110, 114902, (2011)
[18] Chiesa, M.; Gadelrab, K. R.; Verdaguer, A.; Segura, J. J.; Barcons, V.; Neil, H.; Thomson, N. H.; Phillips, M. A.; Stefancich, M.; Sergio, S., Energy dissipation in the presence of sub-harmonic excitation in dynamic atomic force microscopy, EPL, 99, 56002, (2012)
[19] Chiesa, M.; Gadelrab, K.; Stefancich, M.; Armstrong, P.; Li, G.; Souier, T.; Thomson, N. H.; Barcons, V.; Font, J.; Verdaguer, A.; Phillips, M. A.; Santos, S., Investigation of nanoscale interactions by means of subharmonic excitation, J Phys Chem Lett, 3, 2125-2129, (2012)
[20] Burnham, N. A.; Kulik, A. J.; Gremaud, G., Nanosubharmonics: the dynamics of small nonlinear contacts, Phys Rev Lett, 74, 5092-5095, (1995)
[21] Abdel-Rahman, E. M.; Nayfeh, A. H., Contact force identification using the subharmonic resonance of a contact-mode atomic force microscopy, Nanotechnology, 16, 199-207, (2005)
[22] Raman, A.; Melche, J.; Tuang, R., Cantiliver dynamics in atomic force microscopy, Nanotoday, 3, 20-27, (2008)
[23] Rabe, U.; Turner, J.; Arnold, W., Analysis of the high-frequency response of atmic force microscope cantilevers, Appl Phys, 66, 277-282, (1998)
[24] Johnson, K. L., Contact mechanics, (1979), Cambridge University Press Cambridge · Zbl 0599.73108
[25] Rabe, U.; Janser, K.; Arnold, W., Vibration of free and surface coupled atomic force microscopy cantilevers: theory and experiment, Rev Sci Instrum, 67, 3281-3293, (1996)
[26] Rabe, U.; Kester, E.; Arnold, W., Probing linear and nonlinear tip-sample interaction forces by atomic force acoustic microscopy, Surf Interface Anal, 27, 386-391, (1999)
[27] Yamanaka, K.; Noguchi, A.; Tsuji, T.; Koike, T.; Goto, T., Quantitative material characterization by ultrasonic AFM, Surf Interface Anal, 27, 600-606, (1999)
[28] Rabe U, Kopycinska-Müller M, Reinstädtler M, Hirsekorn S, Arnold W. Nonlinear effects in ultrasonic transmission in atomic force microscope contacts. In: Rudenko O, Sapozhnikov OA, editors. Proceedings of the international symposium nonlinear Acoustics Moscow, Faculty of Physics, Moscow State University, 2002;2:711-718.
[29] Rabe, U.; Amelio, S.; Kopycinska, M.; Hirsekorn, S.; Kempf, M.; Göken, M.; Arnold, W., Imaging and measurement of local mechanical material properties by atomic force acoustic microscopy, Surf Interface Anal, 33, 65-70, (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.