×

zbMATH — the first resource for mathematics

About the effectiveness of different methods for the estimation of the multifractal spectrum of natural series. (English) Zbl 1188.28007

MSC:
28A80 Fractals
28A78 Hausdorff and packing measures
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1103/PhysRevLett.86.1900 · doi:10.1103/PhysRevLett.86.1900
[2] DOI: 10.1016/S0378-4371(96)00357-3 · doi:10.1016/S0378-4371(96)00357-3
[3] Falconer K., Techniques in Fractal Geometry (1997) · Zbl 0869.28003
[4] Figliola A., Eur. Phys. J. 143 pp 117–
[5] DOI: 10.1016/S0378-4371(02)01383-3 · Zbl 1001.62029 · doi:10.1016/S0378-4371(02)01383-3
[6] Mallat S., A Wavelet Tour of Signal Processing (1999) · Zbl 0945.68537
[7] Oświȩcimka P., Phys. Rev. E 74 pp 8–
[8] DOI: 10.1002/9780470131466 · Zbl 1183.62153 · doi:10.1002/9780470131466
[9] DOI: 10.1016/j.physleta.2004.06.070 · Zbl 1209.92032 · doi:10.1016/j.physleta.2004.06.070
[10] DOI: 10.1016/0378-4371(95)00247-5 · doi:10.1016/0378-4371(95)00247-5
[11] M. Rosenblatt and A. Figliola, Multifractal Detrended Fluctuation Analysis, AMCA Serie Mec. Comp. XXVI (2007) pp. 2162–2179.
[12] DOI: 10.1103/PhysRevE.76.061114 · doi:10.1103/PhysRevE.76.061114
[13] DOI: 10.1016/j.physa.2009.03.043 · doi:10.1016/j.physa.2009.03.043
[14] DOI: 10.1016/S0378-4371(00)00195-3 · doi:10.1016/S0378-4371(00)00195-3
[15] DOI: 10.1016/j.physa.2005.02.053 · doi:10.1016/j.physa.2005.02.053
[16] Zunino L., Phys. A 387 pp 26–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.