×

zbMATH — the first resource for mathematics

Variational formulation of generalized interfaces for finite deformation elasticity. (English) Zbl 1425.74199
Summary: The objective of this contribution is to formulate generalized interfaces in a variationally consistent manner within a finite deformation continuum mechanics setting. The general interface model is a zero-thickness model that represents the finite thickness “interphase” between different constituents in a heterogeneous material. The interphase may be the transition zone between inclusion and matrix in composites or the grain boundaries in polycrystalline solids. The term “general” indicates that the interface model here accounts for both jumps of the deformation as well as the traction across the interface. Both the cohesive zone model and elastic interface model can be understood as two limits of the current interface model. Furthermore, some aspects of material modeling of generalized interfaces are elaborated and a consistent model is proposed. Finally, the proposed theory is elucidated via a series of numerical examples.
Reviewer: Reviewer (Berlin)

MSC:
74G65 Energy minimization in equilibrium problems in solid mechanics
74B20 Nonlinear elasticity
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] [1] Hill, R . Elastic properties of reinforced solids: Some theoretical principles. J Mech Phys Solid 1963; 11(5): 357-372. · Zbl 0114.15804
[2] [2] Hill, R . On constitutive macro-variables for heterogeneous solids at finite strain. Proc R Soc A Math Phys Eng Sci 1972; 326(1565): 131-147. · Zbl 0229.73004
[3] [3] Ogden, R . On the overall moduli of non-linear elastic composite materials. J Mech Phys Solid 1974; 22(6): 541-553. · Zbl 0293.73003
[4] [4] Kanouté, P, Boso, DP, Chaboche, JL. Multiscale methods for composites: A review. Arch Comput Meth Eng 2009; 16(1): 31-75.
[5] [5] Geers, MGD, Kouznetsova, VG, Brekelmans, WAM. Multi-scale computational homogenization: Trends and challenges. J Comput Appl Mech 2010; 234(7): 2175-2182. · Zbl 1402.74107
[6] [6] Ostoja-Starzewski, M, Kale, S, Karimi, P. Scaling to RVE in random media. Adv Appl Mech 2016; 49: 111-211.
[7] [7] Saeb, S, Steinmann, P, Javili, A. Aspects of computational homogenization at finite deformations: A unifying review from Reuss’ to Voigt’s bound. Appl Mech Rev 2016; 68: 050801.
[8] [8] Matous, K, Geers, MG, Kouznetsova, VG. A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials. J Comput Phys 2017; 330: 192-220.
[9] [9] Hashin, Z . Thin interphase/imperfect interface in elasticity with application to coated fiber composites. J Mech Phys Solid 2002; 50: 2509-2537. · Zbl 1080.74006
[10] [10] McBride, A, Mergheim, J, Javili, A. Micro-to-macro transitions for heterogeneous material layers accounting for in-plane stretch. J Mech Phys Solid 2012; 60(6): 1221-1239.
[11] [11] Daher, N, Maugin, GA. The method of virtual power in continuum mechanics application to media presenting singular surfaces and interfaces. Acta Mech 1986; 60(3-4): 217-240. · Zbl 0594.73004
[12] [12] Chen, T, Chiu, MS, Weng, CN. Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids. J Appl Phys 2006; 100(7): 074308.
[13] [13] Javili, A, McBride, A, Steinmann, P. Thermomechanics of solids with lower-dimensional energetics: On the importance of surface, interface, and curve structures at the nanoscale. A unifying review. Appl Mech Rev 2013; 65(1): 010802.
[14] [14] Moeckel, GP . Thermodynamics of an interface. Arch Rat Mech Anal 1975; 57(3): 255-280. · Zbl 0338.73001
[15] [15] Murdoch, AI . A thermodynamical theory of elastic material interfaces. Q J Mech Appl Math 1976; 29(3): 245-275. · Zbl 0398.73003
[16] [16] Dell’Isola, F, Romano, A. On the derivation of thermomechanical balance equations for continuous systems with a nonmaterial interface. Int J Eng Sci 1987; 25(11-12): 1459-1468.
[17] [17] Fried, E, Gurtin, ME. Thermomechanics of the interface between a body and its environment. Contin Mech Thermodyn 2007; 19(5): 253-271. · Zbl 1160.74303
[18] [18] Gurtin, ME, Murdoch, AI. A continuum theory of elastic material surfaces. Arch Rat Mech Anal 1975; 57(4): 291-323. · Zbl 0326.73001
[19] [19] Gurtin, ME, Weissmüller, J, Larche, F. A general theory of curved deformable interfaces in solids at equilibrium. Philos Mag A 1998; 78(5): 1093-1109.
[20] [20] Steigmann, DJ, Ogden, RW. Elastic surface–substrate interactions. Proc R Soc A Math Phys Eng Sci 1999; 455(1982): 437-474. · Zbl 0926.74016
[21] [21] Fried, E, Todres, RE. Mind the gap: The shape of the free surface of a rubber-like material in proximity to a rigid contactor. J Elast 2005; 80(1-3): 97-151. · Zbl 1197.74013
[22] [22] Huang, ZP, Wang, J. A theory of hyperelasticity of multi-phase media with surface/interface energy effect. Acta Mech 2006; 182(3-4): 195-210.
[23] [23] Steinmann, P . On boundary potential energies in deformational and configurational mechanics. J Mech Phys Solid 2008; 56(3): 772-800. · Zbl 1149.74006
[24] [24] Dingreville, R, Qu, J. Interfacial excess energy, excess stress and excess strain in elastic solids: Planar interfaces. J Mech Phys Solid 2008; 56(5): 1944-1954. · Zbl 1162.74316
[25] [25] Duan, HL, Wang, J, Karihaloo, BL. Theory of elasticity at the nanoscale. Adv Appl Mech 2009; 42: 1-68.
[26] [26] Wang, Y, Weissmüller, J, Duan, HL. Mechanics of corrugated surfaces. J Mech Phys Solid 2010; 58(10): 1552-1566. · Zbl 1200.74008
[27] [27] Wang, ZQ, Zhao, YP, Huang, ZP. The effects of surface tension on the elastic properties of nano structures. Int J Eng Sci 2010; 48(2): 140-150.
[28] [28] Altenbach, H, Eremeyev, VA. On the shell theory on the nanoscale with surface stresses. Int J Eng Sci 2011; 49(12): 1294-1301. · Zbl 1423.74561
[29] [29] Chhapadia, P, Mohammadi, P, Sharma, P. Curvature-dependent surface energy and implications for nanostructures. J Mech Phys Solid 2011; 59(10): 2103-2115. · Zbl 1270.74018
[30] [30] Zemlyanova, AY . The effect of a curvature-dependent surface tension on the singularities at the tips of a straight interface crack. Q J Mech Appl Math 2013; 66(2): 199-219. · Zbl 1291.74165
[31] [31] Dingreville, R, Hallil, A, Berbenni, S. From coherent to incoherent mismatched interfaces: A generalized continuum formulation of surface stresses. J Mech Phys Solid 2014; 72(1): 40-60. · Zbl 1328.74012
[32] [32] Gao, X, Huang, Z, Qu, J. A curvature-dependent interfacial energy-based interface stress theory and its applications to nano-structured materials: (I) General theory. J Mech Phys Solid 2014; 66(1): 59-77. · Zbl 1323.74008
[33] [33] Cordero, NM, Forest, S, Busso, EP. Second strain gradient elasticity of nano-objects. J Mech Phys Solid 2016; 97: 92-124.
[34] [34] Liu, L, Yu, M, Lin, H. Deformation and relaxation of an incompressible viscoelastic body with surface viscoelasticity. J Mech Phys Solid 2017; 98: 309-329.
[35] [35] Barenblatt, GI . The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks. J Appl Math Mech 1959; 23(3): 622-636. · Zbl 0095.39202
[36] [36] Barenblatt, GI . The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 1962; 7: 55-129.
[37] [37] Dugdale, D . Yielding of steel sheets containing slits. J Mech Phys Solid 1960; 8(2): 100-104.
[38] [38] Needleman, A . A continuum model for void nucleation by inclusion debonding. J Appl Mech 1987; 54: 525-531. · Zbl 0626.73010
[39] [39] Xu, XP, Needleman, A. Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solid 1994; 42(9): 1397-1434. · Zbl 0825.73579
[40] [40] Ortiz, M, Pandolfi, A. Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Meth Eng 1999; 44: 1267-1282. · Zbl 0932.74067
[41] [41] Tijssens, MGA, Sluys, BLJ, Van der Giessen, E. Numerical simulation of quasi-brittle fracture using damaging cohesive surfaces. Eur J Mech A Solid 2000; 19(5): 761-779. · Zbl 0993.74073
[42] [42] Alfano, G, Crisfield, MA. Finite element interface models for the delamination analysis of laminated composites: Mechanical and computational issues. Int J Numer Meth Eng 2001; 50: 1701-1736. · Zbl 1011.74066
[43] [43] Gasser, TC, Holzapfel, GA. Geometrically non-linear and consistently linearized embedded strong discontinuity models for 3D problems with an application to the dissection analysis of soft biological tissues. Comput Meth Appl Mech Eng 2003; 192(47-48): 5059-5098.
[44] [44] Van den Boschl, MJ, Schreurs, PJG, Geers, MGD. An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion. Eng Fract Mech 2006; 73(9): 1220-1234.
[45] [45] Fagerström, M, Larsson, R. Theory and numerics for finite deformation fracture modelling using strong discontinuities. Int J Numer Meth Eng 2006; 66(6): 911-948. · Zbl 1110.74815
[46] [46] Charlotte, M, Laverne, J, Marigo, JJ. Initiation of cracks with cohesive force models: A variational approach. Eur J Mech A Solid 2006; 25(4): 649-669. · Zbl 1187.74159
[47] [47] Park, K, Paulino, GH, Roesler, JR. A unified potential-based cohesive model of mixed-mode fracture. J Mech Phys Solid 2009; 57(6): 891-908.
[48] [48] Mosler, J, Scheider, I. A thermodynamically and variationally consistent class of damage-type cohesive models. J Mech Phys Solid 2011; 59(8): 1647-1668. · Zbl 1270.74013
[49] [49] Park, K, Paulino, GH. Cohesive zone models: A critical review of traction-separation relationships across fracture surfaces. Appl Mech Rev 2013; 64(6): 060802.
[50] [50] Dimitri, R, Trullo, M, De Lorenzis, L. Coupled cohesive zone models for mixed-mode fracture: A comparative study. Eng Fract Mech 2015; 148: 145-179.
[51] [51] Wu, C, Gowrishankar, S, Huang, R. On determining mixed-mode traction-separation relations for interfaces. Int J Fract 2016; 202(1): 1-19.
[52] [52] Qian, J, Lin, J, Xu, GK. Thermally assisted peeling of an elastic strip in adhesion with a substrate via molecular bonds. J Mech Phys Solid 2017; 101: 197-208.
[53] [53] Bövik, P . On the modelling of thin interface layers in elastic and acoustic scattering problems. Q J Mech Appl Math 1994; 47(1): 17-42.
[54] [54] Benveniste, Y, Miloh, T. Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech Mater 2001; 33(6): 309-323.
[55] [55] Benveniste, Y . A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media. J Mech Phys Solid 2006; 54(4): 708-734. · Zbl 1120.74323
[56] [56] Monchiet, V, Bonnet, G. Interfacial models in viscoplastic composites materials. Int J Eng Sci 2010; 48(12): 1762-1768. · Zbl 1231.74082
[57] [57] Benveniste, Y, Milton, GW. The effective medium and the average field approximations vis-a-vis the Hashin-Shtrikman bounds. I. The self-consistent scheme in matrix-based composites. J Mech Phys Solid 2010; 58(7): 1026-1038. · Zbl 1244.74009
[58] [58] Benveniste, Y, Milton, GW. The effective medium and the average field approximations vis-a-vis the Hashin-Shtrikman bounds. II. The generalized self-consistent scheme in matrix-based composites. J Mech Phys Solid 2010; 58(7): 1039-1056. · Zbl 1244.74010
[59] [59] Benveniste, Y . Models of thin interphases with variable moduli in plane-strain elasticity. Math Mech Solid 2013; 18(2): 119-134.
[60] [60] Gu, ST, Monteiro, E, He, QC. Coordinate-free derivation and weak formulation of a general imperfect interface model for thermal conduction in composites. Compos Sci Tech 2011; 71(9): 1209-1216.
[61] [61] Gu, ST, He, QC. Interfacial discontinuity relations for coupled multifield phenomena and their application to the modeling of thin interphases as imperfect interfaces. J Mech Phys Solid 2011; 59(7): 1413-1426. · Zbl 1270.74037
[62] [62] Matous, K, Kulkarni, MG, Geubelle, PH. Multiscale cohesive failure modeling of heterogeneous adhesives. J Mech Phys Solid 2008; 56(4): 1511-1533. · Zbl 1171.74433
[63] [63] Kulkarni, MG, Geubelle, PH, Matous, K. Multi-scale modeling of heterogeneous adhesives: Effect of particle decohesion. Mech Mater 2009; 41(5): 573-583.
[64] [64] Kulkarni, MG, Matous, K, Geubelle, PH. Coupled multi-scale cohesive modeling of failure in heterogeneous adhesives. Int J Numer Meth Eng 2010; 84: 916-946. · Zbl 1202.74153
[65] [65] Verhoosel, CV, Remmers, JJC, Gutiérrez, MA. Computational homogenization for adhesive and cohesive failure in quasi-brittle solids. Int J Numer Meth Eng 2010; 83: 1155-1179.
[66] [66] Cid Alfaro, MV, Suiker, ASJ, Verhoosel, CV. Numerical homogenization of cracking processes in thin fibre-epoxy layers. Eur J Mech A Solid 2010; 29(2): 119-131.
[67] [67] Nguyen, VP, Lloberas-Valls, O, Stroeven, M. Homogenization-based multiscale crack modelling: From micro-diffusive damage to macro-cracks. Comput Meth Appl Mech Eng 2011; 200(9-12): 1220-1236. · Zbl 1225.74070
[68] [68] Levitas, VI, Warren, JA. Phase field approach with anisotropic interface energy and interface stresses: Large strain formulation. J Mech Phys Solid 2016; 91: 94-125.
[69] [69] Petryk, H, Stupkiewicz, S. Interfacial energy and dissipation in martensitic phase transformations. Part I: Theory. J Mech Phys Solid 2010; 58(3): 390-408. · Zbl 1193.74046
[70] [70] Petryk, H, Stupkiewicz, S, Maciejewski, G. Interfacial energy and dissipation in martensitic phase transformations. Part II: Size effects in pseudoelasticity. J Mech Phys Solid 2010; 58(3): 373-389. · Zbl 1193.74047
[71] [71] Tuma, K, Stupkiewicz, S, Petryk, H. Size effects in martensitic microstructures: Finite-strain phase field model versus sharp-interface approach. J Mech Phys Solid 2016; 95: 284-307.
[72] [72] Simha, NK, Bhattacharya, K. Kinetics of phase boundaries with edges and junctions. J Mech Phys Solid 1998; 46(12): 2323-2359. · Zbl 1017.74051
[73] [73] Simha, NK, Bhattacharya, K. Kinetics of phase boundaries with edges and junctions in a three-dimensional multi-phase body. J Mech Phys Solid 2000; 48(12): 2619-2641. · Zbl 1005.74049
[74] [74] Spring, DW, Giraldo-Londoño, O, Paulino, GH. A study on the thermodynamic consistency of the Park-Paulino-Roesler (PPR) cohesive fracture model. Mech Res Commun 2016; 78: 1-23.
[75] [75] Steinmann, P, Häsner, O. On material interfaces in thermomechanical solids. Arch Appl Mech 2005; 75(1): 31-41. · Zbl 1097.74006
[76] [76] Esmaeili, A, Steinmann, P, Javili, A. Non-coherent energetic interfaces accounting for degradation. Comput Mech 2017; 59: 361-383. · Zbl 1391.74015
[77] [77] Davydov, D, Javili, A, Steinmann, P. On molecular statics and surface-enhanced continuum modeling of nano-structures. Comput Mater Sci 2013; 69: 510-519.
[78] [78] Marsden, JE, Hughes, TJR. Mathematical foundations of elasticity. Mineola, NY: Dover, 1994.
[79] [79] Holzapfel, GA . Nonlinear solid mechanics: A continuum approach for engineering. New York, NY: John Wiley & Sons, 2000.
[80] [80] Gurtin, ME, Fried, E, Anand, L. The mechanics and thermodynamics of continua. Cambridge: Cambridge University Press, 2009.
[81] [81] Toupin, RA . Elastic materials with couple-stresses. Arch Rat Mech Anal 1962; 11(1): 385-414. · Zbl 0112.16805
[82] [82] Mindlin, R . Second gradient of strain and surface-tension in linear elasticity. Int J Solid Struct 1965; 1(4): 417-438.
[83] [83] Suiker, ASJ, Chang, CS. Application of higher-order tensor theory for formulating enhanced continuum models. Acta Mech 2000; 142(1-4): 223-234.
[84] [84] Forestm, S, Aifantism, EC. Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua. Int J Solid Struct 2010; 47(25-26): 3367-3376.
[85] [85] Dell’Isola, F, Steigmann, D. A two-dimensional gradient-elasticity theory for woven fabrics. J Elast 2014; 118(1): 113-125. · Zbl 1305.74024
[86] [86] Rudraraju, S, Van Der Ven, A, Garikipati, K. Three-dimensional iso-geometric solutions to general boundary value problems of Toupin’s gradient elasticity theory at finite strains. Comput Meth Appl Mech Eng 2014; 278: 705-728. · Zbl 1423.74105
[87] [87] Carcaterra, A, Dell’Isola, F, Esposito, R. Macroscopic description of microscopically strongly inhomogenous systems: A mathematical basis for the synthesis of higher gradients metamaterials. Arch Rat Mech Anal 2015; 218(3): 1239-1262. · Zbl 1352.37193
[88] [88] Auffray, N, Dell’Isola, F, Eremeyev, VA. Analytical continuum mechanics á la Hamilton-Piola least action principle for second gradient continua and capillary fluids. Math Mech Solid 2015; 20(4): 375-417. · Zbl 1327.76008
[89] [89] Dell’Isola, F, Giorgio, I, Pawlikowski, M. Large deformations of planar extensible beams and pantographic lattices: Heuristic homogenization, experimental and numerical examples of equilibrium. Proc R Soc A Math Phys Eng Sci 2016; 472(2185): 20150790.
[90] [90] Andreaus, U, Dell’Isola, F, Giorgio, I. Numerical simulations of classical problems in two-dimensional (non) linear second gradient elasticity. Int J Eng Sci 2016; 108: 34-50.
[91] [91] Gurtin, ME . An introduction to continuum mechanics. New York, NY: Academic Press, Inc., 1981.
[92] [92] Podio-Guidugli, P . Primer in elasticity. J Elast 2000; 58(1): 1-104. · Zbl 0969.74003
[93] [93] Dell’Isola, F, Andreaus, U, Placidi, L. At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topical contribution of Gabrio Piola. Math Mech Solid 2015; 20(8): 887-928. · Zbl 1330.74006
[94] [94] Ogden, R . Large deformation isotropic elasticity - On the correlation of theory and experiment for incompressible rubberlike solids. Proc R Soc A 1972; 326(1567): 565-584. · Zbl 0257.73034
[95] [95] Spencer, A . Part III: Theory of invariants. In: Eringen, AC (ed.) Mathematics. New York, NY: Academic Press, 1971, 239-353.
[96] [96] Spencer, AJM, Hashin, Z. Continuum theory of the mechanics of fibre-reinforced composites, vol. 53. New York, NY: Springer, 1986.
[97] [97] Javili, A, Steinmann, P, Mosler, J. Micro-to-macro transition accounting for general imperfect interfaces. Comput Meth Appl Mech Eng 2017; 317: 274-317.
[98] [98] Chatzigeorgiou, G, Meraghni, F, Javili, A. Generalized interfacial energy and size effects in composites. J Mech Phys Solid 2017; 106: 257-282.
[99] [99] Bowen, RM, Wang, CC. Introduction to vectors and tensors: Linear and multilinear algebra. New York, NY: Plenum Press, 1976.
[100] [100] Kreyszig, E . Differential geometry. Mineola, NY: Dover, 1991. · Zbl 0818.47046
[101] [101] Ciarlet, PG . An introduction to differential geometry with applications to elasticity. New York, NY: Springer, 2005.
[102] [102] Steinmann, P . Geometrical foundations of continuum mechanics: An application to first- and second-order elasticity and elasto-plasticity. New York, NY: Springer, 2015. · Zbl 1329.74003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.