zbMATH — the first resource for mathematics

Determination of interaction forces between parallel dislocations by the evaluation of \(J\) integrals of plane elasticity. (English) Zbl 1348.74015
Summary: The Peach-Koehler expressions for the glide and climb components of the force exerted on a straight dislocation in an infinite isotropic medium by another straight dislocation are derived by evaluating the plane and antiplane strain versions of \(J\) integrals around the center of the dislocation. After expressing the elastic fields as the sums of elastic fields of each dislocation, the energy momentum tensor is decomposed into three parts. It is shown that only one part, involving mixed products from the two dislocation fields, makes a nonvanishing contribution to \(J\) integrals and the corresponding dislocation forces. Three examples are considered, with dislocations on parallel or intersecting slip planes. For two edge dislocations on orthogonal slip planes, there are two equilibrium configurations in which the glide and climb components of the dislocation force simultaneously vanish. The interactions between two different types of screw dislocations and a nearby circular void, as well as between parallel line forces in an infinite or semi-infinite medium, are then evaluated.

74A10 Stress
Full Text: DOI
[1] Eshelby, J.D., The force on an elastic singularity, Philos. Trans. R. Soc. A, 244, 87-112, (1951) · Zbl 0043.44102
[2] Eshelby, J.D., The continuum theory of lattice defects, Solid State Phys., 3, 79-144, (1956)
[3] Cherepanov, G.P., The propagation of cracks in a continuous medium, J. Appl. Math. Mech., 31, 503-512, (1967) · Zbl 0288.73078
[4] Rice, J.R., A path independent integral and approximate analysis of strain concentration by notches and cracks, J. Appl. Mech., 38, 379-386, (1968)
[5] Günther, W., Über einige randintegrale der elastomechanik, Abh. Braunschw. Wiss. Ges, 14, 53-72, (1962) · Zbl 0149.42703
[6] Knowles, J.K.; Sternberg, E., On a class of conservation laws in linearized and finite elastostatics, Arch. Ration. Mech. Anal., 44, 187-211, (1972) · Zbl 0232.73017
[7] Budiansky, B.; Rice, J.R., Conservation laws and energy-release rates, J. Appl. Mech., 40, 201-203, (1973) · Zbl 0261.73059
[8] Maugin, G.A., Material forces: concepts and applications, Appl. Mech. Rev., 48, 247-285, (1995)
[9] Gurtin M.E.: Configurational Forces as Basic Concepts of Continuum Mechanics. Springer, New York (2000) · Zbl 0951.74003
[10] Kienzler R., Herrmann G.: Mechanics in Material Space. Springer, Berlin (2001) · Zbl 1009.74006
[11] Maugin G.A.: Configurational Forces: Thermomechanics, Physics, Mathematics and Numerics. CRC Press/Taylor & Francis, Boca Raton (2011) · Zbl 1234.74002
[12] Peach, M.; Koehler, J.C., The forces exerted on dislocations and the stress fields produced by them, Phys. Rev. Lett., 80, 436-439, (1950) · Zbl 0039.23301
[13] Lubarda, V.A.; Blume, J.A.; Needleman, A., An analysis of equilibrium dislocation distributions, Acta Metall. Mater., 41, 625-642, (1993)
[14] Lubarda, V.A., On the elastic strain energy representation of a dislocated body and dislocation equilibrium conditions, J. Elast., 32, 19-35, (1993) · Zbl 0782.73080
[15] Lubarda, V.A., Dislocation equilibrium conditions revisited, Int. J. Solids Struct., 43, 3444-3458, (2006) · Zbl 1121.74317
[16] Müller, W.H.; Kemmer, G., Applications of the concept of J-integrals for calculation of generalized forces, Acta Mech., 129, 1-12, (1998) · Zbl 0905.73054
[17] Hirth J.P., Lothe J.: Theory of Dislocations. 2nd edn. Wiley, New York (1982) · Zbl 1365.82001
[18] Nabarro, F.R.N.: Theory of Crystal Dislocations. Dover Books on Physics and Chemistry (1987)
[19] Friedel J.: Dislocations. Pergamon Press, Oxford (1964)
[20] Lubarda, V.A., On the non-uniqueness of solution for screw dislocations in multiply connected regions, J. Elast., 52, 289-292, (1999) · Zbl 0944.74024
[21] Lubarda, V.A., Image force on a straight dislocation emitted from a circular void, Int. J. Solids Struct., 48, 648-660, (2011) · Zbl 1236.74015
[22] Lubarda, V.A., Emission of dislocations from nanovoids under combined loading, Int. J. Plast., 27, 181-200, (2011)
[23] Lubarda, V.A.: Interaction between a circular inclusion and a circular void under plane strain conditions. J. Mech. Mater. Struct. (in press) (2015)
[24] Lubarda, V.A.: Circular inclusion near a circular void: determination of elastic antiplane shear fields and configurational forces. Acta Mech. 226, 643-664 (2015) · Zbl 1320.74018
[25] Barber J.R.: Elasticity, 3rd rev. ed. Springer, Dordrecht (2010)
[26] Müller, P.; Saúl, A., Elastic effects on surface physics, Surf. Sci. Rep., 54, 157-258, (2004)
[27] Wang, Y.; Weissmüller, J.; Duan, H.L., Mechanics of corrugated surfaces, J. Mech. Phys. Solids, 58, 1552-1566, (2010) · Zbl 1200.74008
[28] Li, W.N.; Duan, H.L.; Albe, K.; Weissmüller, J., Line stress of step edges at crystal surfaces, Surf. Sci., 605, 947-957, (2011)
[29] Germain, P., La méthode des puissances virtuelles en mécanique des milieux continus. première partie: théorie du second gradient, J. de Mécanique, 12, 235-274, (1973) · Zbl 0261.73003
[30] dell’Isola, F.; Seppecher, P., Edge contact forces and quasi-balanced power, Meccanica, 32, 33-52, (1997) · Zbl 0877.73055
[31] Podio-Guidugli, P.; Vianello, M., Hypertractions and hyperstresses convey the same mechanical information, Cont. Mech. Thermodyn., 22, 163-176, (2010) · Zbl 1257.74003
[32] Javili, A.; dell’Isola, F.; Steinmann, P., Geometrically nonlinear higher-gradient elasticity with energetic boundaries, J. Mech. Phys. Solids, 61, 2381-2401, (2013) · Zbl 1294.74014
[33] Freund, L.B., Stress intensity factor calculations based on a conservation integral, Int. J. Solids Struct., 14, 241-250, (1978)
[34] Rice, J.R.; Bilby, B.A. (ed.); Miller, K.J. (ed.); Willis, J.R. (ed.), Conserved integrals and energetic forces, 33-56, (1985), Cambridge
[35] Asaro R.J., Lubarda V.A.: Mechanics of Solids and Materials. Cambridge University Press, Cambridge (2006) · Zbl 1220.74004
[36] Lubarda, V.A., Markenscoff, X.: A variable core model and the Peierls stress for the mixed (screw-edge) dislocation. Appl. Phys. Lett. 89, Art. No. 151923 (2006) · Zbl 0261.73059
[37] Lubarda, V.A.; Markenscoff, X., Configurational force on a lattice dislocation and the Peierls stress, Arch. Appl. Mech., 77, 147-154, (2007) · Zbl 1109.74006
[38] Eshelby, J.D., The elastic energy momentum tensor, J. Elast., 5, 321-335, (1975) · Zbl 0323.73011
[39] Epstein, M.; Maugin, G., The energy-momentum tensor and material uniformity in finite elasticity, Acta Mech., 83, 127-133, (1990) · Zbl 0714.73029
[40] Gupta, A.; Steigmann, D.J.; Stölken, J.S., On the evolution of plasticity and incompatibility, Math. Mech. Solids, 12, 583-610, (2007) · Zbl 1133.74009
[41] Lubarda, V.A., Dual eshelby stress tensors and related integrals in micropolar elasticity with body forces and couples, Eur. J. Mech. A/Solids, 36, 9-17, (2012) · Zbl 1348.74027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.