×

zbMATH — the first resource for mathematics

A self-adaptive immune PSO algorithm for constrained optimization problems. (English) Zbl 1206.90227
Cai, Zhihua (ed.) et al., Computational intelligence and intelligent systems. 5th international symposium, ISICA 2010, Wuhan, China, October 22–24, 2010. Proceedings. Berlin: Springer (ISBN 978-3-642-16387-6/pbk; 978-3-642-16388-3/ebook). Communications in Computer and Information Science 107, 208-217 (2010).
Summary: This paper proposes a new adaptive immune particle swarm optimization (AIA-PSO) algorithm, which can solve nonlinear constraints optimization problems. Eight common benchmark functions and three practical examples show that the AIA-PSO algorithm is effective and practical.
For the entire collection see [Zbl 1201.68002].
MSC:
90C59 Approximation methods and heuristics in mathematical programming
90C30 Nonlinear programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Jerne, N.K.: Towards a network theory of the immune system. J. Ann. Immunol. 125, 373–389 (1974)
[2] Xiong, H.G., Cheng, H.Z., Li, H.Y.: Optimal reactive power flow incorporating static voltage stability based on multi-objective adaptive immune algorithm. Energy Conversion and Management 49, 1175–1181 (2008) · doi:10.1016/j.enconman.2007.09.005
[3] Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc IEEE Int. Conf. Neural Networks, Perth, Australia, vol. IV, pp. 1942–1948 (1995) · doi:10.1109/ICNN.1995.488968
[4] Chang, W.D., Shih, S.P.: PID controller design of nonlinear systems using an improved particle swarm optimization approach. Commun. Nonlinear Sci. Numer. Simulat. (2010), doi:10.1016/j.cnsns.2010.01.005 · Zbl 1222.90083 · doi:10.1016/j.cnsns.2010.01.005
[5] Sakthivel, V.P., et al.: Artificial immune system for parameter estimation of induction motor. Expert Systems with Applications (2010), doi:10.1016/j.eswa.2010.02.034 · doi:10.1016/j.eswa.2010.02.034
[6] Chun, J.S., Lim, J.P., Yoon, J.S.: Optimal design of synchronous motor with parameter correction using immune algorithm. IEEE Transactions on Energy Conversion 14(3), 610–615 (1999) · doi:10.1109/60.790923
[7] He, Q., Wang, L.: A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization. Applied Mathematics and Computation 186, 1407–1422 (2007) · Zbl 1117.65088 · doi:10.1016/j.amc.2006.07.134
[8] Li, A.Q., Wang, L.P., Li, J.Q.: Application of immune algorithm-based particle swarm optimization for optimized load distribution among cascade hydropower stations. Computers and Mathematics with Applications 57, 1785–1791 (2009) · Zbl 1186.90134 · doi:10.1016/j.camwa.2008.10.016
[9] Zhang, M., Luo, W.J., Wang, X.F.: Differential evolution with dynamic stochastic selection for constrained optimization. Information Sciences 178, 3043–3074 (2008) · Zbl 05303706 · doi:10.1016/j.ins.2008.02.014
[10] He, Q., Wang, L.: A efficient co-evolutionary particle swarm optimization for constrained engineering designed problems. Engineering Applications of Artificial Intelligence 20, 89–99 (2007) · doi:10.1016/j.engappai.2006.03.003
[11] Belegundu, A.D.: A study of mathematical programming methods for structural optimization. Dept. of Civil and Engineering, Univ.of Iowa, Iowa city, Iowa (1982)
[12] Arora, J.S.: Introduction to optimization design. McGraw-Hill, New York (1989)
[13] Colleo, C.A.C.: Use of a self-adaptive penalty approach for engineering optimization problems. Computers in Industry 41, 113–117 (2000) · doi:10.1016/S0166-3615(99)00046-9
[14] Colleo, C.A.C., Montes, E.M.: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Advanced Engineering Informatics 16, 193–223 (2002) · Zbl 05387946 · doi:10.1016/S1474-0346(02)00011-3
[15] Colleo, C.A.C., Becerra, R.L.: Efficient evolutionary optimization through the use of a cultural algorithm. Engineering Optimization 36, 219–236 (2004) · doi:10.1080/03052150410001647966
[16] Deb, K., Gene, A.S.: A robust optimal design technique for mechanical component design. In: Dasgupta, D., Michalewicz, Z. (eds.) Evolutionary Algorithms in Engineering Applications, pp. 497–514. Springer, Berlin (1997) · doi:10.1007/978-3-662-03423-1_27
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.