×

zbMATH — the first resource for mathematics

Thermocapillary migration and interaction of two nondeformable drops. (English) Zbl 1237.76202
Summary: A numerical study on the interaction of two spherical drops in the thermocapillary migration is presented in the microgravity environment. Finite-difference methods are adopted. The interfaces of the drops are captured by the front-tracking technique. It is found that the arrangement of the drops directly influences their migration and interaction, and the motion of one drop is mainly determined by the disturbed temperature field because of the existence of the other drop.
MSC:
76T99 Multiphase and multicomponent flows
76M20 Finite difference methods applied to problems in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Young, N. O., Goldstein, J. S., and Block, M. J. The motion of bubbles in a vertical temperature gradient. J. Fluid Mech., 11, 350–356 (1959) · Zbl 0087.19902 · doi:10.1017/S0022112059000684
[2] Yin, Z. H., Gao, P., Hu, W. R., and Chang, L. Thermocapillary migration of nondeformable drops. Phys. Fluids, 20, 082101 (2008) · Zbl 1182.76854 · doi:10.1063/1.2965549
[3] Meyyappan, M., Wilcos, W. R., and Subramanian, R. S. The slow axisymmetric motion of two bubbles in a thermal gradient. J. Colloid Interface Sci., 94, 243–257 (1983) · doi:10.1016/0021-9797(83)90255-2
[4] Meyyappan, M. and Subramanian, R. S. The thermocapillary motion of two bubbles oriented arbitrarily relative to a thermal gradient. J. Colloid Interface Sci., 97, 291–294 (1984) · doi:10.1016/0021-9797(84)90295-9
[5] Balasubramaniam, R. and Subramanian, R. S. Axisymmetric thermal wake interaction of two bubbles in a uniform temperature gradient at large Reynolds and Marangoni numbers. Phys. Fluids, 11, 2856–2864 (1999) · Zbl 1149.76313 · doi:10.1063/1.870144
[6] Anderson, J. L. Droplet interactions in thermocapillary motion. Int. J. Multiphase Flow, 11, 813–824 (1985) · Zbl 0575.76096 · doi:10.1016/0301-9322(85)90026-6
[7] Keh, H. J. and Chen, S. H. The axisymmetric thermocapillary motion of two fluid drops. Int. J. Multiphase Flow, 16, 515–527 (1990) · Zbl 1134.76574 · doi:10.1016/0301-9322(90)90079-X
[8] Keh, H. J. and Chen, S. H. Droplet interactions in axisymmetric thermocapillary motion. J. Colloid Interface Sci., 151, 1–16 (1992) · doi:10.1016/0021-9797(92)90233-C
[9] Zhou, H. and Davis, R. H. Axisymmetric thermocapillary migration of two deformable viscous drops. J. Colloid Interface Sci., 181, 60–72 (1996) · doi:10.1006/jcis.1996.0356
[10] Nas, S. and Tryggvason, G. Thermocapillary interaction of two bubbles or drops. Int. J. Multiphase Flow, 29, 1117–1135 (2003) · Zbl 1136.76584 · doi:10.1016/S0301-9322(03)00084-3
[11] Nas, S., Muradoglu, M., and Tryggvason, G. Pattern formation of drops in thermocapillary migration. Int. J. Heat Mass Transfer, 49, 2265–2276 (2006) · Zbl 1189.76128 · doi:10.1016/j.ijheatmasstransfer.2005.12.009
[12] Balasubramaniam, B., Lacy, C. E., Woniak, G., and Subramanian, R. S. Thermocapillary migration of bubbles and drops at moderate values of the Marangoni number in reduced gravity. Phys. Fluids, 8, 872–880 (1996) · doi:10.1063/1.868868
[13] Brady, P. T., Herrmann, M., and Lopez, J. M. Confined thermocapillary motion of a three-dimensional deformable drop. Phys. Fluids, 23, 022101 (2011) · Zbl 06421623 · doi:10.1063/1.3529442
[14] Gao, P. Numerical Investigation of the Drop Thermocapillary Migration (in Chinese), Ph. D. dissertation, Chinese Academy of Sciences (2007)
[15] Hick, W. M. On the motion of two spheres in a fluid. Phil. Trans. Roy. Soc., 171, 455–492 (1880) · JFM 12.0694.01 · doi:10.1098/rstl.1880.0013
[16] Herman, R. A. On the motion of two spheres in fluid and allied problems. Quart. J. Pure Appl. Math., 22, 204–262 (1887) · JFM 19.0996.04
[17] Kaneda, Y. and Ishii, K. The hydrodynamic interaction of two spheres moving in an unbounded fluid at small but finite Reynolds number. J. Fluid Mech., 124, 209–217 (1982) · Zbl 0541.76042 · doi:10.1017/S0022112082002468
[18] Batchelor, G. K. An Introduction to Fluid Mechanics, Cambridge University Press, Cambridge, (1967) · Zbl 0152.44402
[19] Wu, W. Y. Fluid Dynamics (in Chinese), Peking University Press, Beijing (1983)
[20] Happle, J. and Brenner, H. Low Reynolds Number Hydrodynamics, 1st ed., Martinus Nijhoff Publishers, The Hague (1965)
[21] Yan, Z. Y. Theory of Low Reynolds Number Hydrodynamics (in Chinese), Peking University Press, Beijing (2002)
[22] Stimson, M. and Jeffery, G. B. The motion of two spheres in a viscous fluid. Proc. Roy. Soc., Lond. A, A111, 110–116 (1926) · JFM 52.0865.02
[23] Goldman, A. J., Cox, R. G., and Brenner, H. The slow motion of two identical arbitrarily orientedspheres through a viscous fluid. Chem. Eng. Sci., 21, 1151–1170 (1966) · doi:10.1016/0009-2509(66)85036-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.