×

zbMATH — the first resource for mathematics

Two fluid shear-free composites. (English) Zbl 1426.76052
Summary: Shear-free composite fluids are constructed from two Letelier rotated unaligned perfect fluids. The component fluid parameters necessary to construct a shear-free composite are investigated. A metric in the Stephani-Barnes solution family and a simple stationary metric are discussed.
©2013 American Institute of Physics
MSC:
76A99 Foundations, constitutive equations, rheology, hydrodynamical models of non-fluid phenomena
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Letelier, P. S., Anisotropic fluids with two perfect-fluid components, Phys. Rev. D, 22, 807, (1980)
[2] Herrera, L.; Santos, N. O., Local anisotropy in self-gravitation systems, Phys. Rep., 286, 53, (1997)
[3] Andersson, N.; Comer, G. L., Relativistic fluid dynamics: Physics for many different scales, Living Rev. Relativ., 10, 1, (2007) · Zbl 1255.85001
[4] Lopez-Monsalvo, C. S.; Andersson, N., Thermal dynamics in general relativity, Proc. R. Soc. London, Ser. A, 467, 738, (2011) · Zbl 1209.83021
[5] Andersson, N.; Comer, G. L., Variational multi-fluid dynamics and causal heat conductivity, Proc. R. Soc. London, Ser. A, 466, 1373, (2010) · Zbl 1307.80002
[6] Ghosh, S. G., Non-spherical collapse of a two fluid star, Int. J. Mod. Phys. A, 23, 4245, (2008) · Zbl 1159.85301
[7] Lin, L. M.; Andersson, N.; Comer, G. L., Oscillations of general relativistic multi-fluid/multi-layer compact stars, Phys. Rev. D, 78, 083008, (2008)
[8] Hoyos, J.; Reisenegger, A.; Valdivia, J. A., Magnetic field evolution in neutron stars: One-dimensional multi-fluid model, Astron. Astrophys., 487, 789, (2008) · Zbl 1151.85306
[9] Chamel, N., Two-fluid models of superfluid neutron star cores, Mon. Not. R. Astron. Soc., 388, 737, (2008)
[10] Zimdahl, W.; Pavon, D., Cosmological two-fluid dynamics, Gen. Relativ. Gravit., 33, 791, (2001) · Zbl 1169.83315
[11] Gromov, A.; Baryshev, Yu.; Teerikorpi, P., Two-fluid matter-quintessence FLRW models: Energy transfer and the equation of state of the universe, Astron. Astrophys., 415, 813, (2004)
[12] Pinto-Neto, N.; Santini, E. E.; Falciano, F. T., Quantization of Friedmann cosmological models with two fluids: Dust plus radiation, Phys. Lett. A, 344, 131, (2005) · Zbl 1194.83041
[13] Gallis, R. M.; Frankel, N. E., Two-component cosmological fluids with gravitational instabilities, J. Math. Phys., 47, 062505, (2006) · Zbl 1112.85006
[14] Cruz, N.; Lepe, S.; Pena, F., Dark energy interacting with two fluids, Phys. Lett. B, 663, 338, (2008)
[15] Aref’eva, I.; Frampton, P. H.; Matsusaki, S., Multifluid models for cyclic cosmology, Proc. Steklov Inst. Math., 265, 59, (2009) · Zbl 1179.83074
[16] Harko, T.; Lobo, F. S. N., Two-fluid dark matter models, Phys. Rev. D, 83, 124051, (2011)
[17] Krisch, J. P.; Glass, E. N., Velocity and heat flow in a composite two fluid system, J. Math. Phys., 52, 102503, (2011) · Zbl 1272.76283
[18] Carminati, J.; Zakhary, E., Classification and compactibility of energy-momentum tensors, Class. Quantum Grav., 16, 3221, (1999) · Zbl 0940.83014
[19] Goliath, M.; Nilsson, U. S., Isotropization of two-component fluids, J. Math. Phys., 41, 6906, (2000) · Zbl 0977.83032
[20] Cissoko, M., Wave fronts in a mixture of two relativistic perfect fluids flowing with two distinct four-velocities, Phys. Rev. D, 63, 083516, (2001)
[21] Zarate, R. D.; Quevedo, H., Thermodynamic scheme of inhomogeneous perfect fluid mixtures, Class. Quantum Grav., 21, 197, (2004) · Zbl 1061.83085
[22] Herrera, L.; Santos, N. O.; Wang, A., Shearing expansion free spherical anisotropic fluid evolution, Phys. Rev. D, 78, 084026, (2008)
[23] Wiltshire, R. J., A rotating three component perfect fluid source and its junction with empty space-time, Gen. Relativ. Gravit., 44, 941, (2012) · Zbl 1238.83023
[24] Koshelev, N. A., Non-adiabatic perturbations in multi-component perfect fluids, J. Cosmol. Astropart. Phys., 2011, 4, 021
[25] Marra, V.; Paakkonen, M., Exact spherically-symmetric inhomogeneous model with n perfect fluids, J. Cosmol. Astropart. Phys., 2012, 1, 025
[26] Dunsby, P. K. S., Gauge invariant perturbations in multi-component fluid cosmologies, Class. Quantum Grav., 8, 1785, (1991)
[27] Bergmann, O., A cosmological solution of the Einstein equations with heat flow, Phys. Lett. A, 82, 383, (1981)
[28] Sanyal, A. K.; Ray, D., Cosmological solutions of the Einstein equation with heat flow, J. Math. Phys., 25, 1975, (1984)
[29] Deng, Y., Solutions of the Einstein equation with heat flow, Gen. Relativ. Gravit., 21, 503, (1989)
[30] Ellis, G. F. R., Shear free solutions in general relativity theory, Gen. Relativ. Gravit., 43, 3253, (2011) · Zbl 1230.83004
[31] Collins, C. B., Shear-free fluids in general relativity, Can. J. Phys., 64, 191, (1986)
[32] Sopuerta, C. F., Covariant study of a conjecture on shear-free barotropic perfect fluids, Class. Quantum Grav., 15, 1043, (1998) · Zbl 0941.83025
[33] Van den Bergh, N., The shear-free perfect fluid conjecture, Class. Quantum Grav., 16, 117, (1999) · Zbl 0946.83024
[34] Van den Bergh, N.; Carminati, J.; Karimian, H., Shear-free perfect fluids with solenoidal magnetic curvature and a gamma-law equation of state, Class. Quantum Grav., 24, 3735, (2007) · Zbl 1128.83308
[35] Carminati, J.; Karimian, H. R.; Van den Bergh, N.; Vu, K. T., Shear-free perfect fluids with a solenoidal magnetic curvature, Class. Quantum Grav., 26, 195002, (2009) · Zbl 1178.83012
[36] Krasinski, A., Inhomogeneous Cosmological Models, (1997), Cambridge University Press · Zbl 0997.83524
[37] Strobel, H., Wiss. Z. - Friedrich-Schiller-Univ. Jena: Naturwiss. Reihe, 17, 195, (1968); Strobel, H., Wiss. Z. - Friedrich-Schiller-Univ. Jena: Naturwiss. Reihe, 17, 195, (1968);
[38] Sussman, R. A., New solutions for heat conducting fluids with a normal shear-free flow, Class. Quantum Grav., 10, 2675, (1993) · Zbl 0796.76099
[39] Comer, G. L.; Peter, P.; Andersson, N., Multi-fluid cosmology: An illustration of fundamental principles, Phys. Rev. D, 85, 103006, (2012)
[40] Samuelsson, L.; Lopez-Monsalvo, C. S.; Andersson, N.; Comer, G. L., Relativistic two-stream instability, Gen. Relativ. Gravit., 42, 413, (2010) · Zbl 1186.83040
[41] Ragusa, S.; Bailyn, M., The center of trace in spinning particles in general relativity, Gen. Relativ. Gravit., 27, 163, (1995)
[42] Costa, L. F.; Natário, J.; Zilhão, M., Mathisson’s helical motions demystified, AIP Conf. Proc., 1458, 367-370, (2011)
[43] Costa, L. F.; Herdeiro, C. A. R.; Natário, J.; Zilhão, M., Mathisson’s helical motions for a spinning particle: Are they unphysical?, Phys. Rev. D, 85, 024001, (2012)
[44] Schutz, B. F., Perfect fluids in general relativity: Velocity potentials and a variational principle, Phys. Rev. D, 2, 2762, (1970) · Zbl 1227.83022
[45] Van Dantzig, D., On the phenomenological thermodynamics of moving matter, Physica, VI, 8, 673, (1939) · JFM 65.1522.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.