×

zbMATH — the first resource for mathematics

Temporal behavior of the conditional and Gibbs’ entropies. (English) Zbl 1108.82024
By using the Fokker-Planck equation, one can study the temporal behaviour of the Gibbs’ entropy of a nonlinear system disturbed by white noises. This result is refined for the Ornstein-Uhlenbeck process.

MSC:
82C05 Classical dynamic and nonequilibrium statistical mechanics (general)
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] K. Loskot and R. Rudnicki, Ann. Pol. Math. 52: 140 (1991).
[2] A. Abbondandolo, Stoch. Anal. Applic. 17: 131 (1999). · Zbl 0922.60065 · doi:10.1080/07362999908809593
[3] G. Toscani and C. Villani, J. Stat. Phys. 98: 1279 (2000). · Zbl 1034.82032 · doi:10.1023/A:1018623930325
[4] A. Arnold, P. Markowich, G. Toscani and A. Unterreiter, Comm. Partial Differential Equations 26: 43 (2001). · Zbl 0982.35113 · doi:10.1081/PDE-100002246
[5] H. Qian, Phys. Rev. E 63: 042103 (2001). · doi:10.1103/PhysRevE.63.042103
[6] H. Qian, M. Qian and X. Tang, J. Stat. Phys. 107, 1129 (2002). · Zbl 1029.82021 · doi:10.1023/A:1015109708454
[7] P. Markowich and C. Villani, Mat. Contemp. 19: 1 (2000).
[8] J. Gibbs, Elementary Principles in Statistical Mechanics (Dover, New York, 1962). · Zbl 0989.00004
[9] D. Ruelle, J. Stat. Phys. 85: 1 (1996). · Zbl 0973.37014 · doi:10.1007/BF02175553
[10] D. Ruelle, Proc. Nat. Acad. Sci. 100: 3054 (2003). · Zbl 1063.82020 · doi:10.1073/pnas.0630567100
[11] G. Nicolis and D. Daems, Chaos 8: 311 (1998). · Zbl 0965.82012 · doi:10.1063/1.166313
[12] D. Daems and G. Nicolis, Phys. Rev. E 59: 4000 (1999). · doi:10.1103/PhysRevE.59.4000
[13] B. Bag, J. Chaudhuri and D. Ray, J. Phys. A 33: 8331 (2000). · Zbl 0970.82027 · doi:10.1088/0305-4470/33/47/301
[14] B. Bag, S. Banik and D. Ray, Phys. Rev. E 64: 026110 (2001). · doi:10.1103/PhysRevE.64.026110
[15] B. Bag, Phys. Rev. E 66: 026122 (2002). · doi:10.1103/PhysRevE.66.026122
[16] B. Bag, Phys. Rev. E 65: 046118 (2002). · doi:10.1103/PhysRevE.65.046118
[17] B. Bag, J. Chem. Phys. 119: 4988 (2003). · doi:10.1063/1.1596411
[18] A. Khinchin, Mathematical Foundations of Statistical Mechanics (Dover, New York, 1949). · Zbl 0037.41102
[19] B. Skagerstam, Z. Naturforsch. 29A: 1239 (1974).
[20] A. Lasota and M. C. Mackey, Chaos, Fractals and Noise: Stochastic Aspects of Dynamics (Springer-Verlag, Berlin, New York, Heidelberg, 1994). · Zbl 0784.58005
[21] B. C. Eu, J. Chem. Phys. 102 (1995).
[22] B. C. Eu, J. Chem. Phys. 106 (1997).
[23] M. Q. D-q Jian and M. p Qian, Commun. Math. Phys. 214 (2000).
[24] H. Qian, J. Phys. Chem. 106: 2065 (2002).
[25] M. C. Mackey, Time’s Arrow: The Origins of Thermodynamic Behaviour (Springer-Verlag, Berlin, New York, Heidelberg, 1992).
[26] J. Voigt, Commun. Math. Phys. 81: 31 (1981). · Zbl 0469.47030 · doi:10.1007/BF01941799
[27] M. C. Mackey and M. Tyran-Kamińska, Physica A 365: 360 (2006). · Zbl 1366.34067
[28] I. Csiszár, Ann. Probability 3: 146 (1975). · Zbl 0318.60013 · doi:10.1214/aop/1176996454
[29] W. Horsthemke and R. Lefever, Noise Induced Transitions: Theory and Applications in Physics, Chemistry and Biology (Springer-Verlag, Berlin, New York, Heidelberg, 1984). · Zbl 0529.60085
[30] H. Risken, The Fokker-Planck Equation (Springer-Verlag, Berlin, New York, Heidelberg, 1984). · Zbl 0546.60084
[31] P. Majee and B. Bag, J. Phys. A 37: 3353 (2004). · Zbl 1049.82054 · doi:10.1088/0305-4470/37/10/003
[32] M. Zakai and J. Snyders, J. Differential Equations 8: 27 (1970). · Zbl 0194.40801 · doi:10.1016/0022-0396(70)90037-9
[33] R.V. Erickson, Ann. Math. Statist. 42: 820 (1971). · Zbl 0235.60057 · doi:10.1214/aoms/1177693440
[34] S. Chandrasekhar, Rev. Mod. Phys. 15: 1 (1943). · Zbl 0061.46403 · doi:10.1103/RevModPhys.15.1
[35] W.-H. Steeb, Physica A 95: 181 (1979). · Zbl 0421.22015 · doi:10.1016/0378-4371(79)90050-5
[36] L. Andrey, Phys. Lett. A 111: 45 (1985). · doi:10.1016/0375-9601(85)90799-6
[37] L. Boltzmann, Lectures on Gas Theory (Dover, Mineola, N.Y., 1995).
[38] D. Ruelle, Ann. N.Y. Acad. Sci. 316: 408 (1978). · doi:10.1111/j.1749-6632.1979.tb29485.x
[39] D. Ruelle, Phys. Let. 72A: 81 (1979). · doi:10.1016/0375-9601(79)90653-4
[40] D. Ruelle, Ann. N.Y. Acad. Sci. 357: 1 (1980). · doi:10.1111/j.1749-6632.1980.tb29669.x
[41] G. Gallavotti, Statistical Mechanics: A Short Treatise (Springer Verlag, Berlin, New York, 1999). · Zbl 0932.82002
[42] J. Dorfman, An Introduction to Chaos in Nonequilibrium Statistical Mechanics, vol. 14 of Cambridge Lecture Notes in Physics (Cambridge University Press, Cambridge, New York, 1999). · Zbl 0973.82001
[43] P. Gaspard, M. Briggs, M. Francis, J. Sengers, R. Gammon, J. Dorfman and R. Calabrese, Nature 394: 865 (1998). · doi:10.1038/29721
[44] M. C. Mackey, Rev. Mod. Phys. 61: 981 (1989). · doi:10.1103/RevModPhys.61.981
[45] L.S. Schulman, Time’s Arrows and Quantum Measurement (Cambridge University Press, Cambridge, 1997).
[46] M.C. Mackey and M. Tyran-Kamińska, Phys. Rep. 422, 167 (2006). · doi:10.1016/j.physrep.2005.09.002
[47] P. Garbaczewski, Phys. Lett. A 341: 33 (2005). · Zbl 1171.82318 · doi:10.1016/j.physleta.2005.04.050
[48] L. Landau and E. Lifshitz, Statistical Physics: Part 1, 3rd ed. (Butterworth-Heinemann, London, 1980)
[49] D. Ruelle, Commun. Math. Phys. 189: 365 (1997). · Zbl 0888.60082 · doi:10.1007/s002200050207
[50] D. Ruelle, Phys. Today (2004).
[51] S. de Groot and P. Mazur, Non-Equilibrium Thermodynamics (Dover, New York, 1984). · Zbl 0041.58401
[52] N. van Kampen, Stochastic Processes in Physics and Chemistry, 2nd ed. (Elesvier-North Holland, Amsterdam, 1992) · Zbl 0511.60038
[53] O. Penrose, Foundations of Statistical Mechanics, revised ed. (Dover, Mineola, New York, 2005). · Zbl 1188.00007
[54] J. R. A. P’erez-Madrid and P. Mazur, Physica A 212: 231 (1994). · doi:10.1016/0378-4371(94)90329-8
[55] J. Rub’i and P. Mazur, Physica A 250: 253 (1998). · doi:10.1016/S0378-4371(97)00463-9
[56] P. Mazur, Physica A 261: 451 (1998). · doi:10.1016/S0378-4371(98)00353-7
[57] J. Rub’i and P. Mazur, Physica A 276: 477 (2000). · doi:10.1016/S0378-4371(99)00452-5
[58] D. Bedeaux and P. Mazur, Physica A 298: 81 (2001). · Zbl 0971.82028 · doi:10.1016/S0378-4371(01)00223-0
[59] J. Rub’i and A. P’erez-Madrid, Physica A 298: 177 (2001). · Zbl 0971.82047 · doi:10.1016/S0378-4371(01)00217-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.