zbMATH — the first resource for mathematics

A data model for algorithmic multiple criteria decision analysis. (English) Zbl 1303.90056
Summary: Various software tools implementing multiple criteria decision analysis (MCDA) methods have appeared over the last decades. Although MCDA methods share common features, most of the implementing software have been developed independently from scratch. Majority of the tools have a proprietary storage format and exchanging data among software is cumbersome. Common data exchange standard would be useful for an analyst wanting to apply different methods on the same problem. The Decision Deck project has proposed to build components implementing MCDA methods in a reusable and interchangeable manner. A key element in this scheme is the XMCDA standard, a proposal that aims to standardize an XML encoding of common structures appearing in MCDA models, such as criteria and performance evaluations. Although XMCDA allows to present most data structures for MCDA models, it almost completely lacks data integrity checks. In this paper we present a new comprehensive data model for MCDA problems, implemented as an XML schema. The data model includes types that are sufficient to represent multi-attribute value/utility models, ELECTRE III/TRI models, and their stochastic extensions, and AHP. We also discuss use of the data model in algorithmic MCDA.

90B50 Management decision making, including multiple objectives
Full Text: DOI
[1] Bigaret, S., & Meyer, P. (2012). Diviz: An MCDA workflow design, execution and sharing tool. Intelligent Decision Technologies Journal, 6(4), 283–296.
[2] Brans, J., Mareschal, B., & Vincke, P. (1984). PROMETHEE: a new family of outranking methods in multicriteria analysis. In J. Brans (Ed.), Operational research (pp. 477–490). Amsterdam: IFORS 84. · Zbl 0571.90042
[3] Cailloux, O. (2010). ELECTRE and PROMETHEE MCDA methods as reusable software components. In C. H. Antunes, D. R. Insua, & L. Dias (Eds.), Proceedings of the 25th Mini-EURO Conference on Uncertainty and Robustness in Planning and Decision Making (URPDM 2010), Coimbra.
[4] Fedorowicz, J., & Williams, G. B. (1986). Representing modeling knowledge in an intelligent decision support system. Decision Support Systems, 2(1), 3–14. doi: 10.1016/0167-9236(86)90116-8 . · doi:10.1016/0167-9236(86)90116-8
[5] Figueira, J., Greco, S., & Ehrgott, M. (Eds.) (2005). Multiple criteria decision analysis: State of the art surveys. New York: Springer. · Zbl 1060.90002
[6] Fourer, R., Gassmann, H. I., Ma, J., & Martin, R. K. (2009). An XML-based schema for stochastic programs. Annals of Operations Research, 166(1), 313–337. doi: 10.1007/s10479-008-0419-x . · Zbl 1163.90683 · doi:10.1007/s10479-008-0419-x
[7] Fourer, R., Ma, J., & Martin, K. (2010a). Optimization services: A framework for distributed optimization. Operations Research, 58(6), 1624–1636. doi: 10.1287/opre.1100.0880 . · doi:10.1287/opre.1100.0880
[8] Fourer, R., Ma, J., & Martin, K. (2010b). OSiL: An instance language for optimization. Computational Optimization and Applications, 45(1), 181–203. doi: 10.1007/s10589-008-9169-6 . · Zbl 1189.90007 · doi:10.1007/s10589-008-9169-6
[9] Gauthier, L., & Néel, T. (1996). SAGE: An object-oriented framework for the construction of farm decision support systems. Computers and Electronics in Agriculture, 16(1), 1–20. doi: 10.1016/S0168-1699(96)00018-X . · doi:10.1016/S0168-1699(96)00018-X
[10] Georgopoulou, E., Sarafidis, Y., & Diakoulaki, D. (1998). Design and implementation of a group DSS for sustaining renewable energies exploitation. European Journal of Operational Research, 109(2), 483–500. doi: 10.1016/S0377-2217(98)00072-1 . · Zbl 0937.90041 · doi:10.1016/S0377-2217(98)00072-1
[11] Greco, S., Mousseau, V., & Słowiński, R. (2008). Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions. European Journal of Operational Research, 191(2), 415–435, doi: 10.1016/j.ejor.2007.08.013 . · Zbl 1147.90013 · doi:10.1016/j.ejor.2007.08.013
[12] Guazzelli, A., Zeller, M., Chen, W., & Williams, G. (2009). PMML: An open standard for sharing models. The R Journal, 1(1):60–65.
[13] Hong, I. B., & Vogel, D. R. (1991). Data and model management in a generalized MCDM-DSS. Decision Sciences, 22(1), 1–25. doi: 10.1111/j.1540-5915.1991.tb01258.x . · doi:10.1111/j.1540-5915.1991.tb01258.x
[14] Hwang, C., & Yoon, K. (1981). Multiple attribute decision making: Methods and applications; A state-of-the-art survey. Newyork: Springer. · Zbl 0453.90002
[15] Jiménez, A., Ríos-Insua, S., & Mateos, A. (2006). A generic multi-attribute analysis system. Computers & Operations Research, 33(4), 1081–1101. doi: 10.1016/j.cor.2004.09.003 . · Zbl 1079.90554 · doi:10.1016/j.cor.2004.09.003
[16] Jármai, K. (1989). Single- and multicriteria optimization as a tool of decision support system. Computers in Industry, 11(3), 249–266, doi: 10.1016/0166-3615(89)90006-7 . · doi:10.1016/0166-3615(89)90006-7
[17] Keeney, R., & Raiffa, H. (1976). Decisions with multiple objectives: Preferences and value tradeoffs. New York: J. Wiley. · Zbl 0488.90001
[18] Lahdelma, R., & Salminen, P. (2001). SMAA-2: Stochastic multicriteria acceptability analysis for group decision making. Operations Research, 49(3), 444–454. doi: 10.1287/opre.49.3.444.11220 . · Zbl 1163.90552 · doi:10.1287/opre.49.3.444.11220
[19] Lahdelma, R., Hokkanen, J., & Salminen, P. (1998). SMAA–Stochastic multiobjective acceptability analysis. European Journal of Operational Research, 106(1), 137–143. doi: 10.1016/S0377-2217(97)00163-X . · doi:10.1016/S0377-2217(97)00163-X
[20] Martin, M., Fuerst, W. (1984). Effective design and use of computer decision models. Management Information Systems Quarterly, 8(1), 17–26.
[21] Minch, R.P., & Sanders, G.L. (1986). Computerized information systems supporting multicriteria decision making. Decision Sciences, 17(3), 395–413. doi: 10.1111/j.1540-5915.1986.tb00233.x . · doi:10.1111/j.1540-5915.1986.tb00233.x
[22] Natividade-Jesus, E., Coutinho-Rodrigues, J., & Antunes, C. H. (2007). A multicriteria decision support system for housing evaluation. Decision Support Systems, 43(3), 779–790, doi: 10.1016/j.dss.2006.03.014 . · doi:10.1016/j.dss.2006.03.014
[23] Roy, B. (1991). The outranking approach and the foundations of ELECTRE methods. Theory and Decision, 31, (1):49–73. · doi:10.1007/BF00134132
[24] Roy, B. (1996). Multicriteria methodology for decision analysis. Dordrecht: Kluwer Academic Publishers. · Zbl 0893.90108
[25] Spengler, T., Geldermann, J., Hähre, S., Sieverdingbeck, A., & Rentz, O. (1998). Development of a multiple criteria based decision support system for environmental assessment of recycling measures in the iron and steel making industry. Journal of Cleaner Production, 6(1), 37–52. doi: 10.1016/S0959-6526(97)00048-6 . · doi:10.1016/S0959-6526(97)00048-6
[26] Teghem, J., Delhaye, C., & Kunsch, P.L. (1989). An interactive decision support system (IDSS) for multicriteria decision aid. Mathematical and Computer Modelling, 12(10–11), 1311–1320. doi: 10.1016/0895-7177(89)90370-1 . · doi:10.1016/0895-7177(89)90370-1
[27] Tervonen, T. (2014). JSMAA: Open source software for SMAA computations. International Journal of Systems Science, 45(1), 69–81. doi: 10.1080/00207721.2012.659706 . · Zbl 1307.93006 · doi:10.1080/00207721.2012.659706
[28] Tervonen, T., & Figueira, J.R. (2008). A survey on stochastic multicriteria acceptability analysis methods. Journal of Multi-Criteria Decision Analysis, 15(1–2), 1–14. doi: 10.1002/mcda.407 . · Zbl 1205.90268 · doi:10.1002/mcda.407
[29] Tervonen, T., Figueira, J.R., Lahdelma, R., Almeida Dias, J., & Salminen, P. (2009). A stochastic method for robustness analysis in sorting problems. European Journal of Operational Research, 192(1), 236–242. doi: 10.1016/j.ejor.2007.09.008 . · Zbl 1179.90226 · doi:10.1016/j.ejor.2007.09.008
[30] van Valkenhoef, G., Tervonen, T., Zwinkels, T., de Brock, B., & Hillege, H. (2013). ADDIS: A decision support system for evidence-based medicine. Decision Support Systems, 55(2), 459–475. doi: 10.1016/j.dss.2012.10.005 . · doi:10.1016/j.dss.2012.10.005
[31] Wallenius, J., Dyer, J. S., Fishburn, P. C., Steuer, R. E., Zionts, S., & Deb, K. (2008). Multiple criteria decision making, multiattribute utility theory: recent accomplishments and what lies ahead. Management Science, 54(7), 1336–1349. · Zbl 1232.90228 · doi:10.1287/mnsc.1070.0838
[32] Zopounidis, C., & Doumpos, M. (2000). PREFDIS: A multicriteria decision support system for sorting decision problems. Computers & Operations Research, 27(7–8), 779–797, doi: 10.1016/S0305-0548(99)00118-5 . · Zbl 0972.90037 · doi:10.1016/S0305-0548(99)00118-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.