×

zbMATH — the first resource for mathematics

Character identities in the twisted endoscopy of real reductive groups. (English) Zbl 1293.22004
Mem. Am. Math. Soc. 1042, v, 94 p. (2013).
Suppose \(G\) is a real reductive algebraic group, \(\theta\) is an automorphism of \(G\), and \(\omega\) is a quasicharacter of the group of real points \(G(\mathbb R)\). Under some additional assumptions, the theory of twisted endoscopy associates to this triple real reductive groups \(H\). The Local Langlands Correspondence partitions the admissible representations of \(H({\mathbb R})\) and \(G({\mathbb R})\) into L-packets. The author proves twisted character identities between L-packets of \(H({\mathbb R})\) and \(G({\mathbb R})\) comprised of essential discrete series or limits of discrete series.

MSC:
22E45 Representations of Lie and linear algebraic groups over real fields: analytic methods
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. Arthur. The endoscopic classification of representations: orthogonal and symplectic groups. Unpublished. · Zbl 1310.22014
[2] James Arthur, The local behaviour of weighted orbital integrals, Duke Math. J. 56 (1988), no. 2, 223-293. · Zbl 0649.10020 · doi:10.1215/S0012-7094-88-05612-8
[3] James Arthur, Stability and endoscopy: informal motivation, Representation theory and automorphic forms (Edinburgh, 1996) Proc. Sympos. Pure Math., vol. 61, Amer. Math. Soc., Providence, RI, 1997, pp. 433-442. · Zbl 0896.11045 · doi:10.1090/pspum/061/1476508
[4] James Arthur, An introduction to the trace formula, Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc., vol. 4, Amer. Math. Soc., Providence, RI, 2005, pp. 1-263. · Zbl 1152.11021
[5] James Arthur, Problems for real groups, Representation theory of real reductive Lie groups, Contemp. Math., vol. 472, Amer. Math. Soc., Providence, RI, 2008, pp. 39-62. · Zbl 1159.22003 · doi:10.1090/conm/472/09236
[6] Armand Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. (2) 75 (1962), 485-535. · Zbl 0107.14804
[7] A. Borel, Automorphic \(L\)-functions, Automorphic forms, representations and \(L\)-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 27-61.
[8] Abderrazak Bouaziz, Sur les caractères des groupes de Lie réductifs non connexes, J. Funct. Anal. 70 (1987), no. 1, 1-79 (French). · Zbl 0622.22009 · doi:10.1016/0022-1236(87)90122-4
[9] Abderrazak Bouaziz, Relèvement des caractères d’un groupe endoscopique pour le changement de base \({\mathbf C}/{\mathbf R}\), Astérisque 171-172 (1989), 163-194 (French). Orbites unipotentes et représentations, II. · Zbl 0708.22004
[10] Abderrazak Bouaziz, Intégrales orbitales sur les groupes de Lie réductifs, Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 5, 573-609 (French, with English summary). · Zbl 0832.22017
[11] Armand Borel and Jacques Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. 27 (1965), 55-150 (French). · Zbl 0395.20024
[12] Armand Borel and Nolan R. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Annals of Mathematics Studies, vol. 94, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. · Zbl 0443.22010
[13] Jean-Yves Ducloux, Méthode des orbites et formules du caractère pour les représentations tempérées d’un groupe algébrique réel réductif non connexe, J. Lie Theory 12 (2002), no. 1, 137-190 (French, with English summary). · Zbl 0996.22011
[14] Michel Duflo, Construction de représentations unitaires d’un groupe de Lie, Harmonic analysis and group representations, Liguori, Naples, 1982, pp. 129-221 (French, with English summary).
[15] Harish-Chandra, Representations of semisimple Lie groups. III, Trans. Amer. Math. Soc. 76 (1954), 234-253. · Zbl 0055.34002 · doi:10.1090/S0002-9947-1954-0062747-5
[16] Harish-Chandra, Discrete series for semisimple Lie groups. I. Construction of invariant eigendistributions, Acta Math. 113 (1965), 241-318. · Zbl 0152.13402
[17] Harish-Chandra, Invariant eigendistributions on a semisimple Lie group, Trans. Amer. Math. Soc. 119 (1965), 457-508. · Zbl 0199.46402 · doi:10.1090/S0002-9947-1965-0180631-0
[18] Harish-Chandra, Discrete series for semisimple Lie groups. II. Explicit determination of the characters, Acta Math. 116 (1966), 1-111. · Zbl 0199.20102
[19] Harish-Chandra, Harmonic analysis on real reductive groups. I. The theory of the constant term, J. Functional Analysis 19 (1975), 104-204. · Zbl 0315.43002
[20] John Horváth, Topological vector spaces and distributions. Vol. I, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966.
[21] Henryk Hecht and Wilfried Schmid, A proof of Blattner’s conjecture, Invent. Math. 31 (1975), no. 2, 129-154. · Zbl 0319.22012
[22] James E. Humphreys, Linear algebraic groups, Springer-Verlag, New York-Heidelberg, 1975. Graduate Texts in Mathematics, No. 21. · Zbl 0325.20039
[23] James E. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, New York-Berlin, 1972. Graduate Texts in Mathematics, Vol. 9. · Zbl 0254.17004
[24] Anthony W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986. An overview based on examples. · Zbl 0604.22001
[25] Anthony W. Knapp, Lie groups beyond an introduction, Progress in Mathematics, vol. 140, Birkhäuser Boston, Inc., Boston, MA, 1996. · Zbl 0862.22006
[26] Robert E. Kottwitz, Stable trace formula: cuspidal tempered terms, Duke Math. J. 51 (1984), no. 3, 611-650. · Zbl 0576.22020 · doi:10.1215/S0012-7094-84-05129-9
[27] Robert E. Kottwitz and Diana Shelstad, Foundations of twisted endoscopy, Astérisque 255 (1999), vi+190 (English, with English and French summaries). · Zbl 0958.22013
[28] A. W. Knapp and Gregg J. Zuckerman, Classification of irreducible tempered representations of semisimple groups, Ann. of Math. (2) 116 (1982), no. 2, 389-455. · Zbl 0516.22011 · doi:10.2307/2007066
[29] J.-P. Labesse, Stable twisted trace formula: elliptic terms, J. Inst. Math. Jussieu 3 (2004), no. 4, 473-530. · Zbl 1061.11025 · doi:10.1017/S1474748004000143
[30] Jean-Pierre Labesse, Introduction to endoscopy, Representation theory of real reductive Lie groups, Contemp. Math., vol. 472, Amer. Math. Soc., Providence, RI, 2008, pp. 175-213. · Zbl 1161.22010 · doi:10.1090/conm/472/09240
[31] R. P. Langlands, Stable conjugacy: definitions and lemmas, Canad. J. Math. 31 (1979), no. 4, 700-725. · Zbl 0421.12013 · doi:10.4153/CJM-1979-069-2
[32] R. P. Langlands, On the classification of irreducible representations of real algebraic groups, Representation theory and harmonic analysis on semisimple Lie groups, Math. Surveys Monogr., vol. 31, Amer. Math. Soc., Providence, RI, 1989, pp. 101-170. · Zbl 0741.22009 · doi:10.1090/surv/031/03
[33] R. P. Langlands, Representations of abelian algebraic groups, Pacific J. Math. Special Issue (1997), 231-250. Olga Taussky-Todd: in memoriam. · Zbl 0910.47025 · doi:10.2140/pjm.1997.181.231
[34] R. P. Langlands and D. Shelstad, On the definition of transfer factors, Math. Ann. 278 (1987), no. 1-4, 219-271. · Zbl 0644.22005 · doi:10.1007/BF01458070
[35] Paul Mezo, Automorphism-invariant representations of real reductive groups, Amer. J. Math. 129 (2007), no. 4, 1063-1085. · Zbl 1125.22006 · doi:10.1353/ajm.2007.0027
[36] David Renard, Intégrales orbitales tordues sur les groupes de Lie réductifs réels, J. Funct. Anal. 145 (1997), no. 2, 374-454 (French, with English summary). · Zbl 0877.22002 · doi:10.1006/jfan.1996.2976
[37] David Renard, Twisted endoscopy for real groups, J. Inst. Math. Jussieu 2 (2003), no. 4, 529-566. · Zbl 1034.22011 · doi:10.1017/S147474800300015X
[38] Michael Reed and Barry Simon, Methods of modern mathematical physics. I, 2nd ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. Functional analysis. · Zbl 0459.46001
[39] D. Shelstad. On geometric transfer in real twisted endoscopy. Unpublished. See http://andromeda.rutgers.edu/\(\sim \)shelstad. · Zbl 1259.22007
[40] D. Shelstad. On spectral transfer factors in real twisted endoscopy. See http://andromeda.rutgers.edu/\(\sim \)shelstad. · Zbl 1259.22007
[41] D. Shelstad, \(L\)-indistinguishability for real groups, Math. Ann. 259 (1982), no. 3, 385-430. · Zbl 0506.22014 · doi:10.1007/BF01456950
[42] D. Shelstad, Endoscopic groups and base change \({\mathbf C}/{\mathbf R}\), Pacific J. Math. 110 (1984), no. 2, 397-416. · Zbl 0488.22033
[43] D. Shelstad, Tempered endoscopy for real groups. I. Geometric transfer with canonical factors, Representation theory of real reductive Lie groups, Contemp. Math., vol. 472, Amer. Math. Soc., Providence, RI, 2008, pp. 215-246. · Zbl 1157.22008 · doi:10.1090/conm/472/09241
[44] D. Shelstad, Tempered endoscopy for real groups. II. Spectral transfer factors, Automorphic forms and the Langlands program, Adv. Lect. Math. (ALM), vol. 9, Int. Press, Somerville, MA, 2010, pp. 236-276. · Zbl 1198.22008
[45] T. A. Springer, Reductive groups, Automorphic forms, representations and \(L\)-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 3-27. · Zbl 0416.20034
[46] T. A. Springer, Linear algebraic groups, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998. · Zbl 0927.20024
[47] T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 167-266. · Zbl 0249.20024
[48] Robert Steinberg, Endomorphisms of linear algebraic groups, Memoirs of the American Mathematical Society, No. 80, American Mathematical Society, Providence, R.I., 1968. · Zbl 0164.02902
[49] Birgit Speh and David A. Vogan Jr., Reducibility of generalized principal series representations, Acta Math. 145 (1980), no. 3-4, 227-299. · Zbl 0457.22011 · doi:10.1007/BF02414191
[50] J. Tate, Number theoretic background, Automorphic forms, representations and \(L\)-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 3-26. · Zbl 0422.12007
[51] J. Tits, Classification of algebraic semisimple groups, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, 1966, pp. 33-62.
[52] V. S. Varadarajan, Harmonic analysis on real reductive groups, Lecture Notes in Mathematics, Vol. 576, Springer-Verlag, Berlin-New York, 1977. · Zbl 0354.43001
[53] Nolan R. Wallach, Real reductive groups. I, Pure and Applied Mathematics, vol. 132, Academic Press, Inc., Boston, MA, 1988. · Zbl 0666.22002
[54] Garth Warner, Harmonic analysis on semi-simple Lie groups. I, Springer-Verlag, New York-Heidelberg, 1972. Die Grundlehren der mathematischen Wissenschaften, Band 188. · Zbl 0265.22020
[55] Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. · Zbl 0797.18001
[56] Gregg Zuckerman, Tensor products of finite and infinite dimensional representations of semisimple Lie groups, Ann. of Math. (2) 106 (1977), no. 2, 295-308. · Zbl 0384.22004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.