×

zbMATH — the first resource for mathematics

Rossby and drift wave turbulence and zonal flows: the Charney-Hasegawa-Mima model and its extensions. (English) Zbl 1357.76011
Summary: A detailed study of the Charney-Hasegawa-Mima model and its extensions is presented. These simple nonlinear partial differential equations suggested for both Rossby waves in the atmosphere and drift waves in a magnetically-confined plasma, exhibit some remarkable and nontrivial properties, which in their qualitative form, survive in more realistic and complicated models. As such, they form a conceptual basis for understanding the turbulence and zonal flow dynamics in real plasma and geophysical systems. Two idealised scenarios of generation of zonal flows by small-scale turbulence are explored: a modulational instability and turbulent cascades. A detailed study of the generation of zonal flows by the modulational instability reveals that the dynamics of this zonal flow generation mechanism differ widely depending on the initial degree of nonlinearity. The jets in the strongly nonlinear case further roll up into vortex streets and saturate, while for the weaker nonlinearities, the growth of the unstable mode reverses and the system oscillates between a dominant jet, which is slightly inclined to the zonal direction, and a dominant primary wave. A numerical proof is provided for the extra invariant in Rossby and drift wave turbulence-zonostrophy. While the theoretical derivations of this invariant stem from the wave kinetic equation which assumes weak wave amplitudes, it is shown to be relatively well-conserved for higher nonlinearities also. Together with the energy and enstrophy, these three invariants cascade into anisotropic sectors in the \(k\)-space as predicted by the Fjørtoft argument. The cascades are characterised by the zonostrophy pushing the energy to the zonal scales. A small scale instability forcing applied to the model has demonstrated the well-known drift wave-zonal flow feedback loop. The drift wave turbulence is generated from this primary instability. The zonal flows are then excited by either one of the generation mechanisms, extracting energy from the drift waves as they grow. Eventually the turbulence is completely suppressed and the zonal flows saturate. The turbulence spectrum is shown to diffuse in a manner which has been mathematically predicted. The insights gained from this simple model could provide a basis for equivalent studies in more sophisticated plasma and geophysical fluid dynamics models in an effort to fully understand the zonal flow generation, the turbulent transport suppression and the zonal flow saturation processes in both the plasma and geophysical contexts as well as other wave and turbulence systems where order evolves from chaos.

MSC:
76B65 Rossby waves (MSC2010)
76F06 Transition to turbulence
76E25 Stability and instability of magnetohydrodynamic and electrohydrodynamic flows
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Frisch, U., Turbulence: the legacy of A. N. Kolmogorov, (1995), Cambridge University Press Cambridge · Zbl 0832.76001
[2] Kraichnan, R. H., Inertial ranges in two-dimensional turbulence, Phys. Fluids, 10, 1417-1423, (1967)
[3] Zakharov, V. S.; Lvov, V. S.; Falkovich, G., Kolmogorov spectra of turbulence, (1992), Springer-Verlag Berlin · Zbl 0786.76002
[4] Nazarenko, S., Wave turbulence (lecture notes in physics), (2011), Springer
[5] Simon, A. A., The structure and temporal stability of jupiter’s zonal winds: A study of the north tropical region, Icarus, 141, 29, (1999)
[6] Sanchez-Lavega, A.; Rojas, J. F.; Sada, P. V., Saturn’s zonal winds at cloud level, Icarus, 147, 405-420, (2000)
[7] Galperin, B.; Nakano, H.; Huang, H.-P.; Sukoriansky, S., The ubiquitous zonal jets in the atmospheres of giant planets and earth’s oceans, Geophys. Res. Lett., 131, L13303, (2004)
[8] Galperin, B.; Young, R. M.B.; Sukoriansky, S.; Dikovskaya, N.; Read, P. L.; Lancaster, A. J.; Armstrong, D., Cassini observations reveal a regime of zonostrophic macroturbulence on Jupiter, Icarus, 229, 295-320, (2014)
[9] J.M. Lewis, Clarifying the dynamics of the general circulation: Phillips’s 1956 experiment, Bull. Amer. Met. Soc. 79(1).
[10] Maximenko, N. A.; Melnichenko, O. V.; Niiler, P. P.; Sasaki, H., Stationary mesoscale jet-like features in the Ocean, Geophys. Res. Lett., 35, L08603, (2008)
[11] Rossby, C. G., Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centres of action, J. Marine Res., 2, 38-55, (1939)
[12] Rossby, C. G., Planetary flow patterns in the atmosphere, Quart. J. Roy. Meteor. Soc. (suppl), 66, 68-87, (1940)
[13] Rudakov, L. I.; Sagdeev, R. Z., On the instability of a nonuniform rarefied plasma in a strong magnetic field, Dokl. Akad. Nauk SSSR, 138, 581, (1961)
[14] Diamond, P. H.; Itoh, S.-I.; Itoh, K.; Hahm, T. S., Zonal flows in plasma - a review, Plasma Phys. Control. Fusion, 47, 5, R35-R161, (2005)
[15] Balk, A. M.; Nazarenko, S. V.; Zakharov, V. E., On the nonlocal turbulence of drift type waves, Phys. Lett. A, 146, 217-221, (1990)
[16] Balk, A. M.; Zakharov, V. E.; Nazarenko, S. V., Nonlocal turbulence of drift waves, Sov. Phys.—JETP, 71, 249-260, (1990)
[17] Shats, M. G.; Xia, H.; Punzmann, H., Spectral condensation of turbulence in plasmas and fluids and its role in low-to-high phase transitions in toroidal plasma, Phys. Rev. E, 71, (2005)
[18] Onishchenko, O. G.; Pokhotelov, O. A.; Astafieva, N. M., Generation of large-scale eddies and zonal winds in planetary atmospheres, Phys.-Usp., 51, 577-589, (2008)
[19] Lawson, J. D., Some criteria for a power producing thermonuclear reactor, Proc. Phys. Soc. B, 70, 6-10, (1957)
[20] (Dendy, R., Plasma Physics, An Introductory Course, (1993), Cambridge University Press) · Zbl 0847.76099
[21] Wagner, F.; Becker, G.; Behringer, K.; Campbell, D.; Eberhagen, A.; Engelhardt, W.; Fussmann, G.; Gehre, O.; Gernhardt, J.; Gierke, G. v.; Haas, G.; Huang, M.; Karger, F.; Keilhacker, M.; Klüber, O.; Kornherr, M.; Lackner, K.; Lisitano, G.; Lister, G. G.; Mayer, H. M.; Meisel, D.; Müller, E. R.; Murmann, H.; Niedermeyer, H.; Poschenrieder, W.; Rapp, H.; Röhr, H., Regime of improved confinement and high beta in neutral-beam-heated divertor discharges of the asdex tokamak, Phys. Rev. Lett., 49, 19, 1408-1412, (1982)
[22] Manfredi, G.; Roach, C. M.; Dendy, R. O., Zonal flow and streamer generation in drift turbulence, Plasma Phys. Control. Fusion, 43, 825-837, (2001)
[23] McIntyre, M. E., Potential vorticity inversion and the wave-turbulence jigsaw: some recent clarifications, Adv. Geosci., 15, 47-56, (2008)
[24] James, I. N., Suppression of baroclinic instability in horizontally sheared flows, J. Atmo. Sci., 44, 24, 3710, (1987)
[25] Hartmann, D. L.; Chan, K. R.; Gary, B. L.; Schoeberl, M. R.; Newman, P. A.; Martin, R. L.; Loewenstein, M.; Podolske, J. R.; Strahan, S. E., Potential vorticity and mixing in the south polar vortex during spring, J. Geophys. Res., 94, D9, 11625-11640, (1989)
[26] Terry, P. W., Suppression of turbulence and transport by sheared flow, Rev. Modern Phys., 72, 109-165, (2000)
[27] Trepte, C.; Hitchman, M., Tropical stratospheric circulation deduced from satellite aerosol data, Nature, 355, 626-628, (1992)
[28] Nazarenko, S. V., On the nonlocal interaction with zonal flows in turbulence of drift and Rossby waves, Sov. Phys.—JETP, 71, 604-607, (1991)
[29] Smolyakov, A. I.; Diamond, P. H.; Malkov, M., Coherent structure phenomena in drift wave-zonal flow turbulence, Phys. Rev. Lett., 84, 491-494, (2000)
[30] Newell, A.; Nazarenko, S.; Biven, L., Wave turbulence and intermittency, Physica D, 152-153, 520-550, (2001) · Zbl 1049.76033
[31] Newell, A. C.; Rumpf, B., Wave turbulence, Ann. Rev. Fluid Mech., 43, 59-78, (2011) · Zbl 1299.76006
[32] Bouchet, F.; Venaille, A., Statistical mechanics of two-dimensional and geophysical flows, Phys. Rep., 515, 5, 227-295, (2012)
[33] Dritschel, D. G.; McIntyre, M. E., Multiple jets as pv staircases: the Phillips effect and the resilience of eddy- transport barriers, J. Atmos. Sci., 65, 855-874, (2008)
[34] Fjørtoft, R., On the changes in the spectral distribution of kinetic energy for two-dimensional non-divergent flow, Tellus, 5, 225-230, (1953)
[35] Harper, K.; Bustamante, M. D.; Nazarenko, S. V., Quadratic invariants for discrete clusters of weakly interacting waves, J. Phys. A: Math. Theor., 46, (2013) · Zbl 1268.76010
[36] Hasegawa, A.; Maclennan, C. G., Nonlinear behavior and turbulence spectra of drift waves and Rossby waves, Phys. Fluids, 22, 2122-2129, (1979) · Zbl 0424.76095
[37] Horton, W.; Hasegawa, A., Quasi-two-dimensional dynamics of plasmas and fluids, Chaos, 4, 227-251, (1994)
[38] Charney, J. G., On the scale of atmospheric motions, Geophys. Public, 17, 3-17, (1948)
[39] Hasegawa, A.; Mima, K., Pseudo-three-dimensional turbulence in magnetised nonuniform plasma, Phys. Fluids, 21, 87-92, (1978) · Zbl 0374.76046
[40] Gill, A. E., The stability of planetary waves on an infinite beta-plane, Geophys. Fluid Dyn., 6, 29-47, (1974)
[41] Zakharov, V. E.; Piterbarg, L., Canonical variables for Rossby waves and plasma drift waves, Phys. Lett. A, 126, 8, 9, 497-500, (1988)
[42] Dorland, W.; Hammett, G. W.; Chen, L.; Park, W.; Cowley, S. C.; Hamaguchi, S.; Horton, W., Numerical simulations of nonlinear 3-D ITG fluid turbulence with an improved Landau damping model, Bull. Am. Phys. Soc., 35, 2005, (1990)
[43] Hasegawa, A.; Wakatani, M., Plasma edge turbulence, Phys. Rev. Lett., 50, 682-686, (1983)
[44] McWilliams, J. C., Fundamentals of geophysical fluid dynamics, (2006), Cambridge University Press · Zbl 1233.86003
[45] Sukoriansky, S.; Chekhlov, A.; Orszag, S. A.; Galperin, B.; Staroselsky, I., Large eddy simulation of two-dimensional isotropic turbulence, J. Sci. Comput., 11, 1, 13-45, (1996) · Zbl 0882.76030
[46] Vladimirova, N.; Derevyanko, S.; Falkovich, G., Phase transitions in wave turbulence, Phys. Rev. E, 85, 1, (2012)
[47] Newell, A. C., The closure problem in a system of random gravity waves, Rev. Geophys., 6, 1, 1-31, (1968)
[48] Benney, D. J.; Newell, A. C., Random wave closures, Stud. Appl. Math., 48, 1, 29, (1969) · Zbl 0185.55404
[49] Newell, A. C.; Rumpf, B.; Zakharov, V. E., Spontaneous breaking of the spatial homogeneity symmetry in wave turbulence, Phys. Rev. Lett., 108, 19, (2012)
[50] Lvov, Y. V.; Nazarenko, S., Noisy spectra, long correlations, and intermittency in wave turbulence, Phys. Rev. E, 69, 6, (2004)
[51] Choi, Y.; Lvov, Y. V.; Nazarenko, S., Probability densities and preservation of randomness in wave turbulence, Phys. Lett. A, 332, 3-4, 230-238, (2004) · Zbl 1123.76332
[52] Choi, Y.; Lvov, Y. V.; Nazarenko, S.; Pokorni, B., Anomalous probability of large amplitudes in wave turbulence, Phys. Lett. A, 339, 3-5, 361-369, (2005) · Zbl 1145.76394
[53] Bender, C. M.; Orszag, S. A., Advanced mathematical methods for scientists and engineers, (1999), Springer · Zbl 0938.34001
[54] Chen, L.-Y.; Goldenfeld, N.; Oono, Y., Renormalization group and singular perturbations: multiple scales, boundary layers, and reductive perturbation theory, Phys. Rev. E, 54, 1, 376-394, (1996)
[55] Biven, L.; Connaughton, C.; Newell, A. C., Structure functions and breakdown criteria for wave turbulence, Physica D, 184, 1-4, 98-113, (2003) · Zbl 1054.76040
[56] Connaughton, C.; Newell, A.; Nazarenko, S., Dimensional analysis and wave turbulence, Physica D, 184, 1-4, 86-97, (2003) · Zbl 1098.76513
[57] Zakharov, V. E.; Filonenko, N. N., Energy spectrum for stochastic oscillations of the surface of a liquid, Sov. Phys. Dokl., 11, 881, (1967)
[58] Dyachenko, S.; Newell, A.; Pushkarev, A.; Zakharov, V., Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear schrodinger equation, Physica D, 57, 96-160, (1992) · Zbl 0767.35082
[59] Kuznetsov, E. A., Turbulence of ion sound in a plasma located in a magnetic field, Sov. Phys. - JETP, 35, 310, (1972)
[60] Connaughton, C., Numerical solutions of the isotropic 3-wave kinetic equation, Physica D, 238, 23-24, 2282-2297, (2009) · Zbl 1423.82021
[61] Monin, A. S.; Piterbarg, L. I., A kinetic equation for Rossby waves, Sov. Phys. Dokl., 32, 622-624, (1987) · Zbl 0642.76029
[62] Pelinovsky, E. N., Wave turbulence on a beta-plane, Okeanologiya, 18, 2, 192-195, (1978)
[63] Mikhailovskii, A. B.; Novakovskii, S. V.; Lakhin, V. P.; Makurin, S. V.; Novakovskaya, E. A.; Onishchenko, O. G., Kolmogorov weak turbulence spectra of an inhomogeneous magnetized plasma, Sov. Phys.—JETP, 68, 1386-1392, (1988)
[64] Novakovskii, S. V.; Mikhailovskii, A. B.; Onishchenko, O. G., On the theory of Kolmogorov spectra of drift wave turbulence, Phys. Lett. A, 132, 1, 33-38, (1988)
[65] Balk, A.; Nazarenko, S. V., On the physical realizability of anisotropic Kolmogorov spectra of weak turbulence, Sov. Phys. JETP, 70, 1031, (1990)
[66] Balk, A.; Nazarenko, S.; Zakharov, V., On the structure of the Rossby/drift turbulence and zonal flows, (Proceedings of the International Symposium Generation of Large-Scale Structures in Continuous Media, (1990), USSR Perm-Moscow), 34-35
[67] Balk, A. M.; Nazarenko, S. V.; Zakharov, V. E., New invariant for drift turbulence, Phys. Lett. A, 152, 276-280, (1991)
[68] Lynch, P., On resonant Rossby-haurwitz triads, Tellus, 61A, 3, 438-445, (2009)
[69] Armstrong, J. A.; Bloembergen, N.; Ducuing, J.; Pershan, P. S., Interactions between light waves in a nonlinear dielectric, Phys. Rev., 127, 6, 1918-1939, (1962)
[70] McComas, C. H.; Bretherton, F. P., Resonant interaction of oceanic internal waves, J. Geophys. Res., 82, 1397-1412, (1977)
[71] Sagdeev, R. Z.; Galeev, A. A., Nonlinear plasma theory, (1969), Benjamin New York · Zbl 0194.58802
[72] Manley, J.; Rowe, H., Some general properties of nonlinear elements-part I eneral energy relations, proc. IRE, 44, 7, 904-913, (1956)
[73] Lynch, P., Resonant Rossby wave triads and the swinging spring, Bull. Am. Met. Soc., 84, 605-616, (2003)
[74] Kartashova, E.; L’vov, V. S., Model of intraseasonal oscillations in earth’s atmosphere, Phys. Rev. Lett., 98, 19, (2007)
[75] Bustamante, M. D.; Kartashova, E., Effect of the dynamical phases on the nonlinear amplitudes’ evolution, Europhys. Lett., 85, 3, 34002, (2009)
[76] Kartashova, E., Wave resonances in systems with discrete spectra, (Zakharov, V. E., Nonlinear Waves and Weak Turbulence, AMS Translations 2, Vol. 182, (1998), American Mathematical Society), 95-130 · Zbl 0889.35065
[77] Bustamante, M. D.; Hayat, U., Complete classification of discrete resonant Rossby/drift wave triads on periodic domains, Commun. Nonlinear Sci. Num. Sim., 18, 9, 2402-2419, (2013) · Zbl 1310.35058
[78] Kartashova, E.; Kartashov, A., Laminated wave turbulence: generic algorithms III, Physica A, 380, 66-74, (2007)
[79] Bustamante, M. D.; Kartashova, E., Dynamics of nonlinear resonances in Hamiltonian systems, EPL, 85, 1, 14004, (2009)
[80] L’vov, V. S.; Pomyalov, A.; Procaccia, I.; Rudenko, O., Finite-dimensional turbulence of planetary waves, Phys. Rev. E, 80, 6, (2009)
[81] Dyachenko, A. I.; Korotkevich, A. O.; Zakharov, V. E., Decay of the monochromatic capillary wave, J. Exp. Theor. Phys. Lett., 77, 477-481, (2003)
[82] Connaughton, C. P.; Nadiga, B. T.; Nazarenko, S. V.; Quinn, B. E., Modulational instability of Rossby and drift waves and generation of zonal jets, J. Fluid Mech., 654, 207-231, (2010) · Zbl 1193.76059
[83] Harris, J.; Connaughton, C.; Bustamante, M. D., Percolation transition in the kinematics of nonlinear resonance broadening in charney—hasegawa—mima model of Rossby wave turbulence, New J. Phys., 15, 8, (2013)
[84] Pushkarev, A., On the Kolmogorov and frozen turbulence in numerical simulation of capillary waves, Eur. J. Mech. B/Fluids, 18, 3, 345-351, (1999) · Zbl 0943.76035
[85] Pushkarev, A.; Zakharov, V., Weak turbulence of capillary waves, Physica D, 135, 98, (2000) · Zbl 0960.76039
[86] Connaughton, C.; Nazarenko, S.; Pushkarev, A., Discreteness and quasi-resonances in weak turbulence of capillary waves, Phys. Rev. E, 63, 4, (2001)
[87] Holm, D. D.; Lynch, P., Stepwise precession of the resonant swinging spring, SIAM, J. Appl. Dyn. Sys., 1, 1, 44-64, (2002) · Zbl 1140.37350
[88] Harris, J.; Bustamante, M. D.; Connaughton, C., Externally forced triads of resonantly interacting waves: boundedness and integrability properties, Commun. Nonlinear Sci. Num. Sim., 17, 12, 4988-5006, (2012) · Zbl 1416.70013
[89] Craik, A. D.D., Wave interactions and fluid flows, (1988), Cambridge University Press Cambridge · Zbl 0657.76014
[90] Gürcan, O. D.; Diamond, P. H.; Hahm, T. S., Nonlinear triad interactions and the mechanism of spreading in drift-wave turbulence, Phys. Rev. Lett., 97, 2, (2006)
[91] Bustamante, M. D.; Quinn, B.; Lucas, D., Robust energy transfer mechanism via precession resonance in nonlinear turbulent wave systems, Phys. Rev. Lett., 113, 8, (2014)
[92] Diamond, P. H.; Liang, Y.-M.; Carreras, B. A.; Terry, P. W., Self-regulating shear flow turbulence: a paradigm for the l to H transition, Phys. Rev. Lett., 72, 16, 2565-2568, (1994)
[93] Malkov, M. A.; Diamond, P. H.; Rosenbluth, M. N., On the nature of bursting in transport and turbulence in drift wave—zonal flow systems, Phys. Plasmas, 8, 12, 5073-5076, (2001)
[94] H. Biglari, P.H. Diamond, P.W. Terry, Influence of sheared poloidal rotation on edge turbulence, Phys. Fluids B, 2(1) 1.
[95] Gürcan, O. D., Effect of sheared flow on the growth rate and turbulence decorrelation, Phys. Rev. Lett., 109, 15, (2012)
[96] Biferale, L., Shell models of energy cascade in turbulence, Ann. Rev. Fluid Mech., 35, 1, 441-468, (2003) · Zbl 1041.76037
[97] Gürcan, O. D.; Garbet, X.; Hennequin, P.; Diamond, P. H.; Casati, A.; Falchetto, G. L., Wave-number spectrum of drift-wave turbulence, Phys. Rev. Lett., 102, 25, (2009)
[98] Manin, D. Y.; Nazarenko, S. V., Nonlinear interaction of small-scale Rossby waves with an intense large-scale zonal flow, Phys. Fluids, 6, 3, 1158-1167, (1994) · Zbl 0832.76014
[99] Smolyakov, A. I.; Diamond, P. H.; Shevchenko, V. I., Zonal flow generation by parametric instability in magnetized plasmas and geostrophic fluids, Phys. Plasmas, 7, 1349-1351, (2000)
[100] Onishchenko, O.; Pokhotelov, O.; Sagdeev, R.; Shukla, P.; Stenflo, L., Generation of zonal flows by Rossby waves in the atmosphere, Nonlinear Processes Geophys., 11, 241-244, (2004)
[101] Champeaux, S.; Diamond, P. H., Streamer and zonal flow generation from envelope modulations in drift wave turbulence, Phys. Lett. A, 288, 214, (2001) · Zbl 0970.76049
[102] Gallagher, S.; Hnat, B.; Connaughton, C.; Nazarenko, S.; Rowlands, G., The modulational instability in the extended hasegawa-mima equation with a finite Larmor radius, Phys. Plasmas, 19, (2012)
[103] Lorentz, E. N., Barotropic instability of Rossby wave motion, J. Atmo. Sci., 29, 258-269, (1972)
[104] Arnold, V. I.; Meshalkin, L. D., Seminar led by A. N. Kolmogorov on selected problems of analysis (1958-1959), Usp. Mat. Nauk, 15, 247, (1960)
[105] Meshalkin, L. D.; Sinai, Y. G., Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous liquid, J. Appl. Math. Mech., 25, 1700-1705, (1962) · Zbl 0108.39501
[106] Okuno, A.; Masuda, A., Effect of horizontal divergence on the geostrophic turbulence on a beta-plane: suppression of the rhines effect, Phys. Fluids, 15, 1, 56-65, (2003) · Zbl 1185.76286
[107] Srinivasan, K.; Young, W. R., Zonostrophic instability, J. Atm. Sci., 69, 5, 1633-1656, (2012)
[108] Parker, J. B.; Krommes, J. A., Zonal flow as pattern formation, Phys. Plasmas, 20, 10, (2013)
[109] Parker, J. B.; Krommes, J., Zonal flow as pattern formation, (Galperin, B.; Read, P., (2014), Zonal Jets, Cambridge University Press Cambridge), (in press)
[110] Mahanti, A. C., The oscillation between Rossby wave and zonal flow in a barotropic fluid, Arch. Met. Geoph. Biokl., Ser. A, 30, 211-225, (1981)
[111] Galperin, B.; Hoemann, J.; Espa, S.; Di Nitto, G., Anisotropic turbulence and Rossby waves in an easterly jet: an experimental study, Geophys. Res. Lett., 41, 6237-6243, (2014)
[112] Rayleigh, L., On the stability of the laminar motion of an inviscid fluid, Phil. Mag., 26, 1001-1010, (1913) · JFM 44.0843.02
[113] Kuo, H. L., Dynamic instability of two-dimensional nondivergent flow in a barotropic atmosphere, J. Meteor., 6, 105-122, (1949)
[114] Hovmöller, E., The trough-and-ridge diagram, Tellus, 1, 2, 62-66, (1949)
[115] Sánchez-Lavega, A.; del Río-Gaztelurrutia, T.; Hueso, R.; Pérez-Hoyos, S.; García-Melendo, E.; Antuñano, A.; Mendikoa, I.; Rojas, J. F.; Lillo, J.; Barrado-Navascués, D.; Gomez-Forrellad, J. M.; Go, C.; Peach, D.; Barry, T.; Milika, D. P.; Nicholas, P.; Wesley, A., The long-term steady motion of saturn’s hexagon and the stability of its enclosed jet stream under seasonal changes, Geophys. Res. Lett., 41, 1425-1431, (2014)
[116] Quinn, B. E.; Nazarenko, S. V.; Connaughton, C.; Gallagher, S.; Hnat, B., Modulational instability in basic plasma and geophysical models, (Galperin, B.; Read, P., Zonal Jets, (2014), Cambridge University Press Cambridge), (in press)
[117] Boffetta, G.; Ecke, R. E., Two-dimensional turbulence, Annu. Rev. Fluid Mech., 44, 1, 427-451, (2012) · Zbl 1350.76022
[118] Falkovich, G.; Shafarenko, A., Non-stationary wave turbulence, J. Nonlinear Sci., 1, 457-480, (1991) · Zbl 0796.76045
[119] Connaughton, C.; Krapivsky, P., Aggregation-fragmentation processes and decaying three-wave turbulence, Phys. Rev. E, 81, 035303(R), (2010)
[120] Rhines, P., Waves and turbulence on a beta-plane, J. Fluid Mech., 69, 417-443, (1975) · Zbl 0366.76043
[121] Newell, A. C.; Zakharov, V. E., The role of the generalized phillips’ spectrum in wave turbulence, Phys. Lett. A, 372, 23, 4230-4233, (2008) · Zbl 1221.76047
[122] Phillips, O. M., The equilibrium range in the spectrum of wind-generated waves, J. Fluid Mech., 4, 04, 426-434, (1958) · Zbl 0080.19202
[123] Nazarenko, S. V.; Schekochihin, A. A., Critical balance in magnetohydrodynamic, rotating and stratified turbulence: towards a universal scaling conjecture, J. Fluid Mech., 677, 134-153, (2011) · Zbl 1241.76457
[124] Vallis, G. K.; Maltrud, M. E., Generation of mean flows and jets on a beta plane and over topography, J. Phys. Oceanogr., 23, 7, 1346-1362, (1993)
[125] Sukoriansky, S.; Dikovskaya, N.; Galperin, B., On the arrest of inverse energy cascade and the rhines scale, J. Atm. Sci., 64, 9, 3312-3327, (2007)
[126] Chekhlov, A.; Orszag, S. A.; Sukoriansky, S.; Galperin, B.; Staroselsky, I., The effect of small-scale forcing on large-scale structures in two-dimensional flows, Physica D, 98, 2-4, 321-334, (1996) · Zbl 0900.76191
[127] Huang, H.-P.; Galperin, B.; Sukoriansky, S., Anisotropic spectra in two-dimensional turbulence on the surface of a rotating sphere, Phys. Fluids, 13, 1, 225-240, (2001) · Zbl 1184.76235
[128] Galperin, B.; Sukoriansky, S.; Huang, H.-P., Universal \(n^{- 5}\) spectrum of zonal flows on giant planets, Phys. Fluids, 13, 6, 1545-1548, (2001) · Zbl 1184.76172
[129] Sukoriansky, S.; Galperin, B.; Dikovskaya, N., Universal spectrum of two-dimensional turbulence on a rotating sphere and some basic features of atmospheric circulation on giant planets, Phys. Rev. Lett., 89, 12, (2002)
[130] L’Vov, V. S.; Nazarenko, S., Discrete and mesoscopic regimes of finite-size wave turbulence, Phys. Rev. E, 82, (2010), 056322-1
[131] Kartashova, E.; Bustamante, M. D., Resonance clustering in wave turbulent regimes: integrable dynamics, Comm. Comp. Phys., 10, 19, 1211-1240, (2011)
[132] Zakharov, V. E.; Korotkevich, A. O.; Pushkarev, A. N.; Dyachenko, A. I., Mesoscopic wave turbulence, JETP Lett., 82, 487-491, (2005)
[133] Nazarenko, S. V., Sandpile behavior in discrete water-wave turbulence, J. Stat. Mech. Theor. Exp., L02002, (2006)
[134] Balk, A. M., A new invariant for Rossby wave systems, Phys. Lett. A., 155, 20-24, (1991)
[135] Balk, A. M., Conservation style of the extra invariant for Rossby waves, Physica D, 223, 109-120, (2006) · Zbl 1200.86003
[136] Zakharov, V. E.; Piterbarg, L., Canonical variables for Rossby waves and plasma drift waves, Phys. Lett. A, 126, 8, 9, 497-500, (1988)
[137] Longuet-Higgins, M.; Gill, A.; Kenyon, K., Resonant interactions between planetary waves [and discussion], Proc. R. Soc. A, 299, 1456, 120-144, (1967)
[138] Nazarenko, S. V.; Quinn, B. E., Triple cascade behaviour in QG and drift turbulence and the generation of zonal jets, Phys. Rev. Lett., 203, (2009)
[139] Balk, A. M.; Yoshikawa, T., The Rossby wave extra invariant in the physical space, Physica D, 238, 384-394, (2009) · Zbl 1160.37392
[140] Saito, I.; Ishioka, K., Angular distribution of energy spectrum in two-dimensional \(\beta\)-plane turbulence in the long-wave limit, Phys. Fluids, 25, 7, (2013)
[141] C. Connaughton, S.V. Nazarenko, B. Quinn, Nonlocal wave turbulence in the Charney-Hasegawa-Mima equation: a short review, arXiv:1012.2714 [nlin.CD]. · Zbl 1357.76011
[142] Connaughton, C. P.; Nazarenko, S. V.; Quinn, B. E., Feedback of zonal flows on wave turbulence driven by small-scale instability in the charney-hasegawa-mima model, Europhys. Lett., 96, 25001, (2011)
[143] Dyachenko, A. I.; Nazarenko, S. V., V. zakharov, wave-vortex dynamics in drift and beta-plane turbulence, Phys. Lett. A, 165, 330-334, (1992)
[144] Nazarenko, S. V.; Newell, A. C.; Galtier, S., Non-local MHD turbulence, Physica D, 152-153, 646-652, (2001) · Zbl 1010.76101
[145] Horton, W., Statistical properties and correlation functions for drift waves, Phys. Fluids, 29, 1491-1503, (1986) · Zbl 0605.76066
[146] Drake, J. F.; Guzdar, P. N.; Hassam, A. B.; Huba, J. D., Nonlinear mode coupling theory of the lower-hybrid-drift instability, Phys. Fluids, 27, 1148-1159, (1984) · Zbl 0578.76125
[147] G. Hammett, The ion temperature gradient (ITG) instability, from a lecture at CMPD/CMSO Winter School, UCLA (sept 2007).
[148] Galperin, B.; Sukoriansky, S.; Huang, H.-P., Universal \(n^{- 5}\) spectrum of zonal flows on giant planets, Phys. Fluids, 13, 1545-1548, (2001) · Zbl 1184.76172
[149] Gama, S.; Frisch, U.; Scholl, H., The two-dimensional Navier-Stokes equations with a large-scale instability of the Kuramoto-Sivashinsky type: numerical exploration on the connection machine, J. Sci. Comp., 6, 4, 425-452, (1991) · Zbl 0742.76044
[150] Numata, R.; Ball, R.; Dewar, R. L., Bifurcation in electrostatic resistive drift wave turbulence, Phys. Plasmas, 14, (2007)
[151] Pushkarev, A. V.; Bos, W. J.; Nazarenko, S. V., Zonal flow generation and its feedback on turbulence production in drift wave turbulence, Phys. Plasmas, 20, (2013)
[152] Dimits, A. M.; Bateman, G.; Beer, M. A.; Cohen, B. I.; Dorland, W.; Hammett, G. W.; Kim, C.; Kinsey, J. E.; Kotschenreuther, M.; Kritz, A. H.; Lao, L. L.; Mandrekas, J.; Nevins, W. M.; Parker, S. E.; Redd, A. J.; Shumaker, D. E.; Sydora, R.; Weiland, J., Comparisons and physics basis of tokamak transport models and turbulence simulations, Phys. Plasmas, 7, 3, 969-983, (2000)
[153] Kingsbury, O. T.; Waltz, R. E., Numerical simulation of drift waves and trapped ion modes, Phys. Plasmas, 1, 2319-2328, (1994)
[154] Burrell, K. H.; Gohil, P.; Groebner, D. H.; Kaplan, R. J.; Robinson, J. I.; Solomon, W. M., Improved charge-coupled device detectors for high-speed, charge exchange spectroscopy studies on the DIII-D tokamak, Rev. Sci. Instrum, 75, 3455-3458, (2004)
[155] Crombé, K., Poloidal rotation velocity in jet advanced mode plasmas using charge exchange recombination spectroscopy, (33rd EPS Conference on Plasma Physics, Rome, 19-23 June 2006, ECA, (2006))
[156] Smith, T., Change of variables in laplace’s and other second-order differential equations, Proc. Phys. Soc., 34, 344-349, (1934) · JFM 60.1129.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.