×

zbMATH — the first resource for mathematics

Influence of wall constructions on the load-carrying capability of light-weight structures. (English) Zbl 1159.74379
Summary: Results of systematic numerical studies are presented which suggest that suitable alternative wall constructions may lead to elastic load-carrying capacities of light-weight structures which significantly exceed those of conventional monocoque constructions, and that in certain cases this improvement may also be accompanied by a decrease in imperfection-sensitivity. Two kinds of wall modifications are considered: a hybrid wall construction where the skin of a light-weight structure is coated with a low-density material, and nonhomogeneous - in particular lattice and biaxially corrugated - wall constructions. The paper focuses on the elastic load-carrying behavior of shell- and plate-like structures, and structural efficiency is assessed on the basis of their bifurcation buckling resistance while other design criteria, such as e.g. stiffness and plasticity, are not taken into account.
MSC:
74K99 Thin bodies, structures
74G60 Bifurcation and buckling
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Almgren, R. F.: An isotropic three dimensional structure with Poisson’s ratio= - 1, J. elasticity 15, 427-430 (1985)
[2] Arbocz, J., Singer, J., 2000. Professor Budiansky’s contribution to the buckling and postbuckling of shell structures. AIAA-Paper 2000-1322.
[3] Brush, D. O.; Almroth, B. O.: Buckling of bars, plates and shells, (1978) · Zbl 0352.73040
[4] Budiansky, B., 1974. Theory of buckling and post-buckling behavior of elastic structures. In: Advances in Applied Mechanics 14, pp. 1 – 65.
[5] Budiansky, B.: On the minimum weights of compression structures, Int. J. Solids struct. 36, 3677-3708 (1999) · Zbl 0933.74050 · doi:10.1016/S0020-7683(98)00169-3
[6] Budiansky, B.; Hutchinson, J. W.: Buckling of circular cylindrical shells under axial compression, , 239-259 (1972)
[7] Evans, K. E.; Alderson, A.: Auxetic materials: functional materials and structures from lateral thinking, Adv. mater. 12, 617-628 (2000)
[8] Evans, K. E.; Alderson, K. L.: Auxetic materials: the positive side of being negative, Eng. sci. Edu. J., 148-154 (2000)
[9] Gough, G. S.; Elam, C. F.; De Bruyne, N. A.: The stabilization of a thin sheet by a continuous supporting medium, J. roy. Aeron. soc. 44, 12-43 (1940)
[10] Hutchinson, J. W.; He, M. Y.: Buckling of circular cylindrical sandwich shells with metal foam cores, Int. J. Solids struct. 37, 6777-6794 (2000) · Zbl 0994.74026 · doi:10.1016/S0020-7683(99)00314-5
[11] Hutchinson, J. W.; Koiter, W. T.: Postbuckling theory, Appl. mech. Rev. 23, 1353-1366 (1970)
[12] Karam, G. N.; Gibson, L. J.: Elastic buckling of cylindrical shells with elastic cores, Int. J. Solids struct. 32, 1259-1306 (1995) · Zbl 0872.73016 · doi:10.1016/0020-7683(94)00147-O
[13] Koiter, W.T., 1945. Over de stabiliteit van het elastisch evenwicht (On the stability of elastic equilibrium). Thesis, Delft University of Technology. H.J. Paris, Amsterdam (English translation: NASA TT-F10833, 1967).
[14] Koiter, W. T.: On the stability of axisymmetric imperfections on the buckling of cylindrical shells under axial compression, Proc. koninkl. Nederl. akad. Wetenschappen B 66, 265-279 (1963) · Zbl 0117.19103
[15] Lakes, R. S.: No contractile obligations, Nature 358, 713-714 (1992)
[16] Lakes, R. S.: Advances in negative Poisson’s ratio materials, Adv. mater. 5, 293-296 (1993)
[17] Levy, R.: Buckling optimization of beams and plates on elastic foundations, ASCE, J. Eng. mech. 116, No. 1, 18-34 (1990)
[18] NASA, 1965. Buckling of thin-walled circular cylinders. NASA SP-8007 (revised in 1968).
[19] Obrecht, H.; Rosenthal, B.; Fuchs, P.; Lange, S.; Marusczyk, Chr.: Buckling, postbuckling and imperfection-sensitivity: old questions and some new answers, Comput. mech. 37, 498-506 (2006) · Zbl 1158.74361 · doi:10.1007/s00466-005-0732-z
[20] Plaut, R. H.; Johnson, L. W.; Olhoff, N.: Bimodal optimization of compressed columns on elastic foundation, J. appl. Mech. 53, 130-134 (1986) · Zbl 0591.73109 · doi:10.1115/1.3171699
[21] Singer, J.; Arbocz, J.; Weller, T.: Buckling experiments: experimental methods in buckling of thin-walled structures – vol.1. Basic concepts, columns, beams and plates, (1997) · Zbl 0935.74005
[22] Singer, J.; Arbocz, J.; Weller, T.: Buckling experiments: experimental methods in buckling of thin-walled structures – vol. 2. Shells, built-up structures, composites and additional topics, (2002)
[23] Thompson, J. M. T.: Optimization as a generator of structural instability, Int. J. Mech. sci. 14, 627-629 (1972)
[24] Thompson, J. M. T.; Lewis, G. M.: On the optimum design of thin-walled compression members, J. mech. Phys. solids 20, 101-109 (1972)
[25] Thompson, J. M. T.; Supple, W. J.: Erosion of optimum designs by compound branching phenomena, J. mech. Phys. solids 21, 135-144 (1973)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.