×

zbMATH — the first resource for mathematics

Recursive procedure in the stability of Fréchet polynomials. (English) Zbl 1343.39039
Summary: By means of a new stability result, established for symmetric and multi-additive mappings, and using the concepts of stability couple and of stability chain, we prove, by a recursive procedure, the generalized stability of two of Fréchet’s polynomial equations. We also give a new functional characterization of generalized polynomials and a new approach to solving the generalized stability of the monomial equation.

MSC:
39B82 Stability, separation, extension, and related topics for functional equations
39B52 Functional equations for functions with more general domains and/or ranges
20M15 Mappings of semigroups
65Q30 Numerical aspects of recurrence relations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bourgin, D, Classes of transformations and bordering transformations, Bull. Am. Math. Soc, 57, 223-237, (1951) · Zbl 0043.32902
[2] Găvruţă, P, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl, 184, 431-438, (1994) · Zbl 0818.46043
[3] Fréchet, M, Une definition fonctionnelle des polynômes, Nouv. Ann. Math, 9, 145-182, (1909) · JFM 40.0389.02
[4] Fréchet, M, LES polynômes abstraits, J. Math. Pures Appl, 8, 71-92, (1929) · JFM 55.0242.03
[5] Whitney, H, On functions with bounded \(n\)th differences, J. Math. Pures Appl, 36, 87-95, (1957) · Zbl 0077.06901
[6] Whitney, H, On bounded functions with bounded \(n\)th differences, Proc. Am. Math. Soc, 10, 480-481, (1959) · Zbl 0089.27601
[7] Hyers, D, Transformations with bounded \(m\)-th differences, Pac. J. Math, 11, 591-602, (1961) · Zbl 0099.10501
[8] Albert, M; Baker, J, Functions with bounded \(n\)th differences, Ann. Pol. Math, 43, 93-103, (1983) · Zbl 0436.39005
[9] Mazur, S; Orlicz, W, Grundlegende eigenschaften der polynomischen operationen, I, Stud. Math, 5, 50-88, (1934) · JFM 60.1074.03
[10] Mazur, S; Orlicz, W, Grundlegende eigenschaften der polynomischen operationen, II, Stud. Math, 5, 179-189, (1934) · JFM 60.1074.04
[11] Jun, KW; Kim, HM, On the Hyers-Ulam-Rassias stability of a general cubic functional equation, Math. Inequal. Appl, 8, 289-302, (2003) · Zbl 1032.39015
[12] Lee, YH, On the generalized Hyers-Ulam stability of the generalized polynomial function of degree 3, Tamsui Oxford Univ. J. Math. Sci, 24, 429-444, (2008) · Zbl 1175.39021
[13] Lee, YH, On the Hyers-Ulam-Rassias stability of the generalized polynomial function of degree 2, J. Chungcheong Math. Soc, 22, 201-210, (2009)
[14] Hyers, D; Rassias, T (ed.), Polynomial operators, 410-444, (1989), Teaneck · Zbl 0762.46037
[15] Djoković, D, A representation theorem for [inlineequation not available: see fulltext.] and its applications, Ann. Pol. Math, 22, 189-198, (1969) · Zbl 0187.39903
[16] Hyers, D, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27, 222-224, (1941) · Zbl 0061.26403
[17] Aoki, T, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Jpn, 2, 84-88, (1950) · Zbl 0040.35501
[18] Rassias, T, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc, 72, 297-300, (1978) · Zbl 0398.47040
[19] Lijn, G, LES polynômes abstraits, Bull. Sci. Math, 84, 55-80, (1940) · Zbl 0061.03507
[20] Gajda, Z, On stability of additive mappings, Int. J. Math. Sci, 14, 431-434, (1991) · Zbl 0739.39013
[21] Rassias, T; Šemrl, P, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Am. Math. Soc, 114, 989-993, (1992) · Zbl 0761.47004
[22] Jung, SM, Springer optimization and its applications 48, (2011), New York · Zbl 1221.39038
[23] Borelli, C; Invernizzi, C, Sulla stabilitá dell’equazione funzionale dei polinomi, Rend. Semin. Mat. (Torino), 57, 197-208, (1999) · Zbl 1144.39023
[24] Kaiser, Z: Stability of functional equations in abstract structures. PhD thesis, University of Debrecen (2005)Kaiser, Z: Stability of functional equations in abstract structures. PhD thesis, University of Debrecen (2005) · JFM 60.1074.04
[25] Ciepliński, K, Generalized stability of multi-additive mappings, Appl. Math. Lett, 23, 1291-1294, (2010) · Zbl 1204.39026
[26] Gajda, Z, Local stability of the functional equation characterizing polynomial functions, Ann. Pol. Math, 52, 119-137, (1990) · Zbl 0717.39007
[27] Cădariu, L; Radu, V, Stability properties for monomial functional equations, An. Univ. Vest. Timiş., Ser. Mat.-Inform, 43, 23-38, (2005) · Zbl 1174.39324
[28] Cădariu, L; Radu, V, Remarks on the stability of monomial functional equations, Fixed Point Theory, 8, 201-218, (2007) · Zbl 1140.39013
[29] Eungrasamee, T; Udomkavanich, P; Nakmahachalasint, P, Generalized stability of classical polynomial functional equation of order \(n\), (2012) · Zbl 1346.39029
[30] Gilányi, A, Hyers-Ulam stability of monomial functional equations on a general domain, Proc. Natl. Acad. Sci. USA, 19, 10588-10590, (1999) · Zbl 0963.39030
[31] Gilányi, A, On the stability of monomial functional equations, Publ. Math. (Debr.), 58, 201-212, (2000) · Zbl 0991.39016
[32] Lee, YH, On the stability of the monomial functional equation, Bull. Korean Math. Soc, 45, 397-403, (2008) · Zbl 1152.39023
[33] Mirmostafaee, A, Stability of the monomial functional equation in quasi normed spaces, Bull. Korean Math. Soc, 47, 777-785, (2010) · Zbl 1201.39025
[34] Baker, J, A general functional equation and its stability, Proc. Am. Math. Soc, 133, 1857-1864, (2005) · Zbl 1066.39026
[35] Cholewa, P, Almost approximately polynomial functions, 127-136, (1987), Singapore
[36] Gajda, Z, A solution to a problem of J. Schwaiger, Aequ. Math, 32, 38-44, (1987) · Zbl 0619.39006
[37] Ger, R, On almost polynomial functions, Colloq. Math, 24, 95-101, (1971) · Zbl 0224.39001
[38] Kominek, Z, A few remarks on almost \(C\)-polynomial functions, Math. Slovaca, 55, 555-561, (2005) · Zbl 1150.39328
[39] Popa, D; Raşa, I, The Fréchet functional equation with application to the stability of certain operators, J. Approx. Theory, 184, 138-144, (2012) · Zbl 1238.39008
[40] Schwaiger, J, Functional equations for homogeneous polynomials arising from multilinear mapings and their stability, Ann. Math. Sil, 8, 157-171, (1994) · Zbl 0820.39011
[41] Székelyhidi, L, Note on a stability theorem, Can. Math. Bull, 25, 500-501, (1982) · Zbl 0505.39002
[42] Székelyhidi, L, Fréchet’s equation and Hyers theorem on noncommutative semigroups, Ann. Pol. Math, 48, 183-189, (1988) · Zbl 0656.39005
[43] Tabor, J, \(k\)-proper families and almost approximately polynomial functions, Glas. Mat, 38, 177-191, (2001) · Zbl 0998.39017
[44] Wolna, D, The stability of monomial functions on a restricted domain, Aequ. Math, 72, 100-109, (2006) · Zbl 1104.39028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.