Louis, Justine Spanning trees in directed circulant graphs and cycle power graphs. (English) Zbl 1354.05027 Monatsh. Math. 182, No. 1, 51-63 (2017). MSC: 05C05 05C30 PDF BibTeX XML Cite \textit{J. Louis}, Monatsh. Math. 182, No. 1, 51--63 (2017; Zbl 1354.05027) Full Text: DOI arXiv
Li, Min; Chen, Zhibing; Ruan, Xiaoqing; Yong, Xuerong The formulas for the number of spanning trees in circulant graphs. (English) Zbl 1315.05033 Discrete Math. 338, No. 11, 1883-1906 (2015). MSC: 05C05 PDF BibTeX XML Cite \textit{M. Li} et al., Discrete Math. 338, No. 11, 1883--1906 (2015; Zbl 1315.05033) Full Text: DOI
Wu, Mei-Hui; Chung, Long-Yeu The number of spanning trees of the Cartesian product of regular graphs. (English) Zbl 1407.05057 Math. Probl. Eng. 2014, Article ID 750618, 9 p. (2014). MSC: 05C05 05C30 PDF BibTeX XML Cite \textit{M.-H. Wu} and \textit{L.-Y. Chung}, Math. Probl. Eng. 2014, Article ID 750618, 9 p. (2014; Zbl 1407.05057) Full Text: DOI
Atajan, Talip; Yong, Xuerong; Inaba, Hiroshi An efficient approach for counting the number of spanning trees in circulant and related graphs. (English) Zbl 1230.05097 Discrete Math. 310, No. 6-7, 1210-1221 (2010). MSC: 05C05 05C30 PDF BibTeX XML Cite \textit{T. Atajan} et al., Discrete Math. 310, No. 6--7, 1210--1221 (2010; Zbl 1230.05097) Full Text: DOI
Golin, Mordecai J.; Yong, Xuerong; Zhang, Yuanping The asymptotic number of spanning trees in circulant graphs. (English) Zbl 1205.05108 Discrete Math. 310, No. 4, 792-803 (2010). MSC: 05C30 05C05 PDF BibTeX XML Cite \textit{M. J. Golin} et al., Discrete Math. 310, No. 4, 792--803 (2010; Zbl 1205.05108) Full Text: DOI
Atajan, Talip; Otsuka, Naohisa; Yong, Xuerong Counting the number of spanning trees in a class of double fixed-step loop networks. (English) Zbl 1202.05062 Appl. Math. Lett. 23, No. 3, 291-298 (2010). MSC: 05C30 68M10 68R10 90C35 PDF BibTeX XML Cite \textit{T. Atajan} et al., Appl. Math. Lett. 23, No. 3, 291--298 (2010; Zbl 1202.05062) Full Text: DOI