zbMATH — the first resource for mathematics

A primer on encoding models in sensory neuroscience. (English) Zbl 1396.91633
Summary: A principal goal in sensory neuroscience is to understand how properties of our environment are reflected in neural activity patterns. Recent advances in computational modeling provide increasingly accurate predictions of how neural populations across the brain respond to complex naturalistic stimuli. The employed computational models, referred to as encoding models, explicitly transform complex stimuli into observed neural responses. This rapidly developing field is becoming increasingly important in sensory neuroscience as it provides detailed insights into the functional organization of neural representations. The present work starts by discussing the theoretical underpinnings of encoding models. Next, various applications of encoding models are reviewed. Finally, potential research directions that may shape future work in this area of research are described.

91E10 Cognitive psychology
92C20 Neural biology
92B20 Neural networks for/in biological studies, artificial life and related topics
Full Text: DOI
[1] Ahmad, S., & Yu, A.J. (2013). Active sensing as Bayes-optimal sequential decision making. In Proc. twenty-ninth annu. conf. uncertain. artif. intell (pp. 12-21).
[2] Anderson, J.; Carter, C.; Fincham, J.; Qin, Y.; Ravizza, S.; Rosenberg-Lee, M., Using fMRI to test models of complex cognition, Cognitive Science, 32, 8, 1323-1348, (2008)
[3] Aquino, K. M.; Robinson, P. A.; Drysdale, P. M., Spatiotemporal hemodynamic response functions derived from physiology, Journal of Theoretical Biology, 347, 118-136, (2014)
[4] Ashby, F.; Waldschmidt, J., Fitting computational models to fMRI data, Behavior Research Methods, 40, 3, 713-721, (2008)
[5] Barlow, H. B., Summation and inhibition in the frog’s retina, Journal of Physiology, 119, 69-88, (1953)
[6] Barth, M.; Poser, B. A., Advances in high-field BOLD fMRI, Materials, 4, 11, 1941-1955, (2011)
[7] Bengio, Y., Lee, D.-H., Bornschein, J., & Lin, Z. (2015).Towards biologically plausible deep learning. arXiv:1502.04156 [cs.LG].
[8] Bialek, W.; Rieke, F.; de Ruyter van Steveninck, R.; Warland, D., Reading a neural code, Science, 252, 1854-1857, (1991)
[9] Blakemore, C.; Cooper, G. F., Development of the brain depends on the visual environment, Nature, 228, 5270, 477-478, (1970)
[10] Bliss, T. V.P.; Lømo, T., Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path, Journal of Physiology, 232, 2, 357-374, (1973)
[11] Brewer, A. A.; Barton, B., Visual cortex in ageing and alzheimer’s disease: changes in visual field maps and population receptive fields, Frontiers in Psychology, 5, 74, 1-16, (2014)
[12] Brouwer, G. J.; Heeger, D. J., Categorical clustering of the neural representation of color, Journal of Neuroscience, 33, 39, 15454-15465, (2013)
[13] Carandini, M.; Demb, J. B.; Mante, V.; Tolhurst, D. J.; Dan, Y.; Olshausen, B. A., Do we know what the early visual system does?, Journal of Neuroscience, 25, 46, 10577-10597, (2005)
[14] Carlson, T. A., Orientation decoding in human visual cortex: new insights from an unbiased perspective, Journal of Neuroscience, 34, 24, 8373-8383, (2014)
[15] Chong, E.; Familiar, A. M.; Shim, W. M., Reconstructing representations of dynamic visual objects in early visual cortex, Proceedings of the National Academy of Sciences, 113, 5, 1453-1458, (2015)
[16] Churchland, P. S.; Sejnowski, T. J., Neural representation and neural computation, Philosophical Perspectives, 4, 1990, 343-382, (1990)
[17] Cichy, R.M., Khosla, A., Pantazis, D., Torralba, A., & Oliva, A. (2016). Deep neural networks predict hierarchical spatio-temporal cortical dynamics of human visual object recognition. arXiv:1601.02970 [cs.CV].
[18] Cichy, R.; Pantazis, D., Can visual information encoded in cortical columns be decoded from magnetoencephalography data in humans?, Neuroimage, 121, 193-204, (2015)
[19] Clark, A., Surfing uncertainty: prediction, action, and the embodied mind, (2016), Oxford University Press
[20] Clarke, A.; Devereux, B. J.; Randall, B.; Tyler, L. K., Predicting the time course of individual objects with MEG, Cerebral Cortex, 25, 3602-3612, (2014)
[21] Corney, D.; Lotto, R. B., What are lightness illusions and why do we see them?, PLoS Computational Biology, 3, 9, e180, (2007)
[22] Cox, D. D.; Dean, T., Neural networks and neuroscience-inspired computer vision, Current Biology, 24, 18, R921-R929, (2014)
[23] Cox, D. D.; Savoy, R. L., Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex, Neuroimage, 19, 261-270, (2003)
[24] Creutzfeldt, O. D.; Nothdurft, H. C., Representation of complex visual stimuli in the brain, Naturwissenschaften, 65, 6, 307-318, (1978)
[25] Çukur, T.; Nishimoto, S.; Huth, A. G.; Gallant, J. L., Attention during natural vision warps semantic representation across the human brain, Nature, 16, 6, 763-770, (2013)
[26] Daugman, J. G., Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters, Journal of the Optical Society of America A, 2, 7, 1160-1169, (1985)
[27] David, S. V.; Hayden, B. Y.; Mazer, J. A.; Gallant, J. L., Attention to stimulus features shifts spectral tuning of V4 neurons during natural vision, Neuron, 59, 3, 509-521, (2008)
[28] DeSimone, K.; Viviano, J. D.; Schneider, K. A., Population receptive field estimation reveals new retinotopic maps in human subcortex, Journal of Neuroscience, 35, 27, 9836-9847, (2015)
[29] Edelman, S., The minority report: some common assumptions to reconsider in the modelling of the brain and behaviour, Journal of Experimental and Theoretical Artificial Intelligence, (2015)
[30] Einhäuser, W.; König, P., Getting real - sensory processing of natural stimuli, Current Opinion in Neurobiology, 20, 3, 389-395, (2010)
[31] Emadi, N.; Esteky, H., Behavioral demand modulates object category representation in the inferior temporal cortex, Journal of Neurophysiology, 112, 10, 2628-2637, (2014)
[32] Felsen, G.; Dan, Y., A natural approach to studying vision, Nature Neuroscience, 8, 12, 1643-1646, (2005) · Zbl 1130.82325
[33] Fitzpatrick, D., Seeing beyond the receptive field in primary visual cortex, Current Opinion in Neurobiology, 10, 4, 438-443, (2000)
[34] Forstmann, B. U.; Wagenmakers, E.-J., Model-based cognitive neuroscience: a conceptual introduction, (2015), Springer
[35] Freeman, J.; Brouwer, G. J.; Heeger, D. J.; Merriam, E. P., Orientation decoding depends on maps, not columns, Journal of Neuroscience, 31, 4792-4804, (2011)
[36] Frégnac, Y.; Bathellier, B., Cortical correlates of low-level perception: from neural circuits to percepts, Neuron, 88, 1, 110-126, (2015)
[37] Friston, K. J.; Holmes, A. P.; Worsley, K. J.; Poline, J.-B.; Frith, C. D.; Frackowiak, R. S.J., Statistical parametric maps in functional imaging: A general linear approach, Human Brain Mapping, 2, 189-210, (1995)
[38] Fritz, J.; Shamma, S.; Elhilali, M.; Klein, D., Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex, Nature Neuroscience, 6, 11, 1216-1223, (2003)
[39] Fukushima, K., Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position, Biological Cybernetics, 36, 4, 193-202, (1980) · Zbl 0419.92009
[40] Gallant, J. L.; Braun, J.; Van Essen, D. C., Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex, Science, 259, 5091, 100-103, (1993)
[41] Gallant, J. L.; Connor, C. E.; Van Essen, D. C., Neural activity in areas V1, V2 and V4 during free viewing of natural scenes compared to controlled viewing, NeuroReport, 9, 9, 2153-2158, (1998)
[42] Gerstner, W.; Kistler, W. M.; Naud, R.; Paninski, L., Neuronal dynamics: from single neurons to networks and models of cognition, (2014), Cambridge University Press Cambridge
[43] Gilbert, C. D.; Li, W., Top-down influences on visual processing, Nature Reviews Neuroscience, 14, 5, 350-363, (2013)
[44] Gollisch, T.; Meister, M., Eye smarter than scientists believed: neural computations in circuits of the retina, Neuron, 65, 2, 150-164, (2010)
[45] Güçlü, U., Thielen, J., Hanke, M., & van Gerven, M.A.J. (2016). Brains on beats. arXiv:1606.02627 [q-bio.NC].
[46] Güçlü, U.; van Gerven, M. A.J., Unsupervised feature learning improves prediction of human brain activity in response to natural images, PLoS Computational Biology, 10, 8, e1003724, (2014)
[47] Güçlü, U.; van Gerven, M. A.J., Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream, Journal of Neuroscience, 35, 27, 10005-10014, (2015)
[48] Güçlü, U.; van Gerven, M. A.J., Increasingly complex representations of natural movies across the dorsal stream are shared between subjects, Neuroimage, (2015), (in press)
[49] Güçlü, U., & van Gerven, M.A.J. (2016). Modeling the dynamics of human brain activity with recurrent neural networks. arXiv:1606.03071 [q-bio.NC].
[50] Hanke, M.; Baumgartner, F. J.; Ibe, P.; Kaule, F. R.; Pollmann, S.; Speck, O., A high-resolution 7-tesla fMRI dataset from complex natural stimulation with an audio movie, Scientific Data, 1, 1-18, (2014)
[51] Harrison, S. A.; Tong, F., Decoding reveals the contents of visual working memory in early visual areas, Nature, 458, 632-635, (2009)
[52] Hartline, H. K., The receptive fields of optic nerve fibers, American Journal of Physiology, 130, 690-699, (1940)
[53] Hasson, U.; Malach, R.; Heeger, D. J., Reliability of cortical activity during natural stimulation, Trends in Cognitive Sciences, 14, 1, 40-48, (2010)
[54] Haxby, J. V.; Gobbini, M. I.; Furey, M. L.; Ishai, A.; Schouten, J. L.; Pietrini, P., Distributed and overlapping representations of faces and objects in ventral temporal cortex, Science, 293, 2425-2430, (2001)
[55] Haxby, J. V.; Guntupalli, J. S.; Connolly, A. C.; Halchenko, Y. O.; Conroy, B. R.; Gobbini, M. I., A common, high-dimensional model of the representational space in human ventral temporal cortex, Neuron, 72, 2, 404-416, (2011)
[56] Haynes, J.-D.; Rees, G., Decoding mental states from brain activity in humans, Nature Reviews Neuroscience, 7, 523-534, (2006)
[57] Haynes, J.-D.; Sakai, K.; Rees, G.; Gilbert, S.; Frith, C.; Passingham, R. E., Reading hidden intentions in the human brain, Current Biology, 17, 4, 323-328, (2007)
[58] Hochreiter, S.; Schmidhuber, J., Long short-term memory, Neural Computation, 9, 8, 1735-1780, (1997)
[59] Horikawa, T., & Kamitani, Y. (2016). Generic decoding of seen and imagined objects using hierarchical visual features. arXiv:1510.06479 [q-bio.NC].
[60] Horikawa, T.; Tamaki, M.; Miyawaki, Y.; Kamitani, Y., Neural decoding of visual imagery during sleep, Science, 340, 6132, 639-642, (2013)
[61] Hsiao, S., Central mechanisms of tactile shape perception, Current Opinion in Neurobiology, 18, 4, 418-424, (2008)
[62] Hubel, D. H.; Wiesel, T. N., Receptive fields of single neurones in the cat’s striate cortex, Journal of Physiology, 148, 574-591, (1959)
[63] Huth, A. G.; de Heer, W. A.; Griffiths, T. L.; Gallant, J. L., Natural speech reveals the semantic maps that tile human cerebral cortex, Nature, 532, 453-458, (2016)
[64] Huth, A. G.; Nishimoto, S.; Vu, A. T.; Gallant, J. L., A continuous semantic space describes the representation of thousands of object and action categories across the human brain, Neuron, 76, 6, 1210-1224, (2012)
[65] Hyvärinen, A.; Hoyer, P. O., A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images, Vision Research, 41, 18, 2413-2423, (2001)
[66] Johnson, M. H.; Munakata, Y., Processes of change in brain and cognitive development, Trends in Cognitive Sciences, 9, 3, 152-158, (2005)
[67] Jones, J. P.; Palmer, L. A., An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex, Journal of Neurophysiology, 58, 1233-1258, (1987)
[68] Joo, S. J.; Boynton, G. M.; Murray, S. O., Long-range, pattern-dependent contextual effects in early human visual cortex, Current Biology, 22, 9, 781-786, (2012)
[69] Kamitani, Y.; Tong, F., Decoding the visual and subjective contents of the human brain, Nature Neuroscience, 8, 5, 679-685, (2005)
[70] Kay, K. N.; Naselaris, T.; Prenger, R. J.; Gallant, J. L., Identifying natural images from human brain activity, Nature, 452, 352-355, (2008)
[71] Kay, K. N.; Rokem, A.; Winawer, J.; Dougherty, R. F.; Wandell, B. A., Glmdenoise: A fast, automated technique for denoising task-based fMRI data, Frontiers in Neuroscience, 7, 247, (2013)
[72] Kay, K. N.; Weiner, K. S.; Grill-Spector, K., Attention reduces spatial ucertainty in human ventral temporal cortex, Current Biology, 25, 5, 595-600, (2015)
[73] Kay, K. N.; Winawer, J.; Mezer, A.; Wandell, B. A., Compressive spatial summation in human visual cortex, Journal of Neurophysiology, 110, 2, 481-494, (2013)
[74] Kay, K. N.; Winawer, J.; Rokem, A.; Mezer, A.; Wandell, B. A., A two-stage cascade model of BOLD responses in human visual cortex, PLoS Computational Biology, 9, 5, e1003079, (2013)
[75] Kayser, C.; Körding, K. P.; König, P., Processing of complex stimuli and natural scenes in the visual cortex, Current Opinion in Neurobiology, 14, 4, 468-473, (2004)
[76] Kell, A.; Yamins, D.; Norman-Haignere, S.; Seibert, D.; Hong, H.; DiCarlo, J., Computational similarities between visual and auditory cortex studied with convolutional neural networks, fMRI, and electrophysiology, Journal of Visualization, 15, 12, 1093, (2015)
[77] Khaligh-Razavi, S.-M.; Kriegeskorte, N., Deep supervised, but not unsupervised, models may explain IT cortical representation, PLoS Computational Biology, 10, 11, e1003915, (2014)
[78] Klein, B. P.; Harvey, B. M.; Dumoulin, S. O., Coordinated attraction of spatial response selectivity by spatial attention throughout visual cortex, Neuron, 84, 1, 20, (2014)
[79] Knudsen, E. I.; Konishi, M., Center-surround organization of auditory receptive fields in the owl, Science, 202, 4369, 778-780, (1978)
[80] Kobatake, E.; Tanaka, K., Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex, Journal of Neurophysiology, 7, 3, 856-867, (1994)
[81] Kok, P.; Bains, L. J.; van Mourik, T.; Norris, D. G.; de Lange, F. P., Selective activation of the deep layers of the human primary visual cortex by top-down feedback, Current Biology, 26, 3, 371-376, (2016)
[82] Kok, P.; de Lange, F. P., Shape perception simultaneously up- and downregulates neural activity in the primary visual cortex, Current Biology, 24, 13, 1531-1535, (2014)
[83] Kriegeskorte, N., Deep neural networks: A new framework for modeling biological vision and brain information processing, Annual Review of Vision Science, 1, 1, 417-446, (2015)
[84] Kriegeskorte, N.; Cusack, R.; Bandettini, P., How does an fMRI voxel sample the neuronal activity pattern: compact-kernel or complex spatio-temporal filter?, Neuroimage, 49, 1965-1976, (2010)
[85] Kriegeskorte, N.; Kreiman, G., Visual population codes, (2011), The MIT Press Cambridge, MA
[86] Kriegeskorte, N.; Mur, M.; Bandettini, P., Representational similarity analysis - connecting the branches of systems neuroscience, Frontiers in Systems Neuroscience, 2, 4, (2008)
[87] Kuffler, S. W.S. W., Discharge patterns and functional organization of Mammalian retina, Journal of Neurophysiology, 16, 1, 37-68, (1953)
[88] LeCun, Y.; Bengio, Y.; Hinton, G., Deep learning, Nature, 521, 7553, 436-444, (2015)
[89] Lee, S.; Papanikolaou, A.; Logothetis, N. K.; Smirnakis, S. M.; Keliris, G. A., A new method for estimating population receptive field topography in visual cortex, Neuroimage, 81, 144-157, (2013)
[90] Lewi, J.; Butera, R.; Paninski, L., Sequential optimal design of neurophysiology experiments, Neural Computation, 21, 3, 619-687, (2009) · Zbl 1180.68219
[91] Logothetis, N. K., What we can do and what we cannot do with fMRI, Nature, 453, 7197, 869-878, (2008)
[92] Marčelja, S., Mathematical description of the responses of simple cortical cells, Journal of the Optical Society of America A, 70, 11, 1297-1300, (1980)
[93] Marr, D., A theory for cerebral neocortex, Proceedings of the Royal Society of London B Biological Sciences, 176, 1043, 161-234, (1970)
[94] Masland, R. H., The neuronal organization of the retina, Neuron, 76, 2, 266-280, (2012)
[95] McKee, J. L.; Riesenhuber, M.; Miller, E. K.; Freedman, D. J., Task dependence of visual and category representations in prefrontal and inferior temporal cortices, Journal of Neuroscience, 34, 48, 16065-16075, (2014)
[96] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. arXiv:1310.4546 [cs.CL].
[97] Mitchell, T. M.; Shinkareva, S. V.; Carlson, A.; Chang, K.-M.; Malave, V. L.; Mason, R. A., Predicting human brain activity associated with the meanings of nouns, Science, 320, 5880, 1191-1195, (2008)
[98] Miyawaki, Y.; Uchida, H.; Yamashita, O.; Sato, M.; Morito, Y.; Tanabe, H. C., Visual image reconstruction from human brain activity using a combination of multiscale local image decoders, Neuron, 60, 5, 915-929, (2008)
[99] Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.a.; Veness, J.; Bellemare, M. G., Human-level control through deep reinforcement learning, Nature, 518, 7540, 529-533, (2015)
[100] Monti, M. M., Statistical analysis of fMRI time-series: A critical review of the GLM approach, Frontiers in Human Neuroscience, 5, 28, (2011)
[101] Muckli, L.; De Martino, F.; Vizioli, L.; Petro, L. S.; Smith, F. W.; Uğurbil, K., Contextual feedback to superficial layers of V1, Current Biology, 25, 20, 2690-2695, (2015)
[102] Mumford, D., On the computational architecture of the neocortex. II. the role of cortico-cortical loops, Biological Cybernetics, 66, 3, 241-251, (1992)
[103] Naselaris, T.; Kay, K. N.; Nishimoto, S.; Gallant, J. L., Encoding and decoding in fMRI, Neuroimage, 56, 2, 400-410, (2011)
[104] Naselaris, T.; Olman, C. A.; Stansbury, D. E.; Ugurbil, K.; Gallant, J. L., A voxel-wise encoding model for early visual areas decodes mental images of remembered scenes, Neuroimage, 105, 215-228, (2015)
[105] Naselaris, T.; Prenger, R. J.; Kay, K. N.; Oliver, M.; Gallant, J. L., Bayesian reconstruction of natural images from human brain activity, Neuron, 63, 6, 902-915, (2009)
[106] Ng, A. Y.; Jordan, M. I., On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes, (Adv. neural inf. process. syst., Vol. 14, (2001)), 1-8
[107] Niazi, A. M.; van den Broek, P. L.C.; Klanke, S.; Barth, M.; Poel, M.; Desain, P., Online decoding of object-based attention using real-time fMRI, European Journal of Neuroscience, 30, 2, 319-329, (2014)
[108] Nishida, S., Huth, A.G., Gallant, J.L., & Nishimoto, S. (2015). Word statistics in large-scale texts explain the human cortical semantic representation of objects, actions, and impressions. In The 45th annual meeting of the society for neuroscience, Vol. 333, no. 13.
[109] Nishimoto, S.; Vu, A. T.; Naselaris, T.; Benjamini, Y.; Yu, B.; Gallant, J. L., Reconstructing visual experiences from brain activity evoked by natural movies, Current Biology, 21, 1-6, (2011)
[110] Norman, K. A.; Polyn, S. M.M.; Detra, G. J.; Haxby, J. V., Beyond mind-Reading: multi-voxel pattern analysis of fMRI data, Trends in Cognitive Sciences, 10, 9, 424-430, (2006)
[111] Okazawa, G.; Tajima, S.; Komatsu, H., Image statistics underlying natural texture selectivity of neurons in macaque V4, Proceedings of the National Academy of Sciences, 112, 4, E351-E360, (2015)
[112] Olshausen, B. A.; Field, D. J., Emergence of simple-cell receptive field properties by learning a sparse code for natural images, Nature, 381, 607-609, (1996)
[113] Op de Beeck, H. P., Against hyperacuity in brain Reading: spatial smoothing does not hurt multivariate fMRI analyses?, Neuroimage, 49, 1943-1948, (2010)
[114] Orban, G. A., Higher order visual processing in macaque extrastriate cortex, Physiological Reviews, 88, 1, 59-89, (2008)
[115] Paninski, L., Maximum likelihood estimation of cascade point-process neural encoding models, Network Computation in Neural Systems, 15, 243-262, (2004)
[116] Pantazis, D.; Oliva, A.; Cichy, R. M., Resolving human object recognition in space and time, Nature Neuroscience, 17, 455-462, (2014)
[117] Parkkonen, L.; Andersson, J.; Hämäläinen, M.; Hari, R., Early visual brain areas reflect the percept of an ambiguous scene, Proceedings of the National Academy of Sciences, 105, 51, 20500-20504, (2008)
[118] Pedregosa, F.; Eickenberg, M.; Ciuciu, P.; Thirion, B.; Gramfort, A., Data-driven HRF estimation for encoding and decoding models, Neuroimage, 104, 209-220, (2015)
[119] Peirce, J. W., Understanding mid-level representations in visual processing, Journal of Visualization, 15, 7, 5, (2015)
[120] Polanía, R.; Paulus, W.; Nitsche, M. A., Noninvasively decoding the contents of visual working memory in the human prefrontal cortex within high-gamma oscillatory patterns, Journal of Cognitive Neuroscience, 24, 2, 304-314, (2012)
[121] Purves, D.; Wojtach, W. T.; Lotto, R. B., Understanding vision in wholly empirical terms, Proceedings of the National Academy of Sciences, 108, 15588-15595, (2011)
[122] Quian Quiroga, R.; Reddy, L.; Kreiman, G.; Koch, C.; Fried, I., Invariant visual representation by single neurons in the human brain, Nature, 435, 7045, 1102-1107, (2005)
[123] Rainer, G.; Lee, H.; Logothetis, N. K., The effect of learning on the function of monkey extrastriate visual cortex, PLoS Biology, 2, e44, (2004)
[124] Rao, R. P.; Ballard, D. H., Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects, Nature Neuroscience, 2, 1, 79-87, (1999)
[125] Riesenhuber, M.; Poggio, T., Hierarchical models of object recognition in cortex, Nature Neuroscience, 2, 11, 1019-1025, (1999)
[126] Ringach, D., Mapping receptive fields in primary visual cortex, Journal of Physiology, 558, 3, 717-728, (2004)
[127] Robinson, L.; Rolls, E. T., Invariant visual object recognition: biologically plausible approaches, Biological Cybernetics, 209, 4-5, 505-535, (2015)
[128] Rust, N. C.; Movshon, J. A., In praise of artifice, Nature Neuroscience, 8, 12, 1647-1650, (2005)
[129] Sanger, T. D., Neural population codes, Current Opinion in Neurobiology, 13, 2, 238-249, (2003)
[130] Särkkä, S.; Solin, A.; Nummenmaa, A.; Vehtari, A.; Auranen, T.; Vanni, S., Dynamic retrospective filtering of physiological noise in BOLD fMRI: DRIFTER, Neuroimage, 60, 2, 1517-1527, (2012)
[131] Schoenmakers, S.; Barth, M.; Heskes, T.; van Gerven, M. A.J., Linear reconstruction of perceived images from human brain activity, Neuroimage, 83, 951-961, (2013)
[132] Schoenmakers, S.; Güçlü, U.; van Gerven, M. A.J.; Heskes, T., Gaussian mixture models and semantic gating improve reconstructions from human brain activity, Frontiers in Computational Neuroscience, 8, 1-10, (2015)
[133] Scholte, H. S.; Ghebreab, S.; Waldorp, L.; Smeulders, A. W.M.; Lamme, V. A.F., Brain responses strongly correlate with Weibull image statistics when processing natural images, Journal of Vision, 9, 4, 29.1-15, (2009)
[134] Serences, J. T.; Ester, E. F.; Vogel, E. K.; Awh, E., Stimulus-specific delay activity in human primary visual cortex, Psychological Science, 20, 2, 207-214, (2009)
[135] Serre, T.; Wolf, L.; Bileschi, S.; Riesenhuber, M.; Poggio, T., Robust object recognition with cortex-like mechanisms, IEEE Transactions on Pattern Analysis and Machine Intelligence, 29, 3, 411-426, (2007)
[136] Sherrington, C. S., The integrative action of the nervous system, (1906), Yale University Press New Haven, CT
[137] Simoncelli, E. P.; Olshausen, B. A., Natural image statistics and neural representation, Annual Review of Neuroscience, 24, 1193-1216, (2001)
[138] Smith, F. W.; Muckli, L., Nonstimulated early visual areas carry information about surrounding context, Proceedings of the National Academy of Sciences, 107, 46, 20099-20103, (2010)
[139] Stanley, G. B.; Li, F. F.; Dan, Y., Reconstruction of natural scenes from ensemble responses in the lateral geniculate nucleus, Journal of Neuroscience, 19, 18, 8036-8042, (1999)
[140] Stelzer, J.; Lohmann, G.; Mueller, K.; Buschmann, T.; Turner, R., Deficient approaches to human neuroimaging, Frontiers in Human Neuroscience, 8, 462, (2014)
[141] Stokes, M.; Thompson, R.; Cusack, R.; Duncan, J., Codes in visual cortex during mental imagery, Journal of Neuroscience, 29, 2009, 1565-1572, (2010)
[142] Summerfield, C.; de Lange, F. P., Expectation in perceptual decision making: neural and computational mechanisms, Nature Reviews Neuroscience, 15, 745-756, (2014)
[143] Swisher, J. D.; Gatenby, J. C.; Gore, J. C.; Wolfe, B. A.; Moon, C. H.; Kim, S. G., Multiscale pattern analysis of orientation-selective activity in the primary visual cortex, Journal of Neuroscience, 30, 325-330, (2010)
[144] Thirion, B.; Duchesnay, E.; Hubbard, E.; Dubois, J.; Poline, J.-B.; Lebihan, D., Inverse retinotopy: inferring the visual content of images from brain activation patterns, Neuroimage, 33, 4, 1104-1116, (2006)
[145] Thurstone, L. L., The stimulus-response fallacy in psychology, Psychological Review, 3, 354-369, (1923)
[146] Tong, F.; Pratte, M. M.S., Decoding patterns of human brain activity, Annual Review of Psychology, 63, 483-509, (2012)
[147] van Bergen, R.; Ma, W. J.; Pratte, M. S.; Jehee, J. F.M., Sensory uncertainty decoded from visual cortex predicts behavior, Nature Neuroscience, 18, 12, 1728-1730, (2015)
[148] van de Nieuwenhuijzen, M. E.; Backus, A. R.; Bahramisharif, A.; Doeller, C. F.; Jensen, O.; van Gerven, M. A.J., MEG-based decoding of the spatiotemporal dynamics of visual category perception, Neuroimage, 83, 1063-1073, (2013)
[149] van Gerven, M. A.J.; de Lange, F. P.; Heskes, T., Neural decoding with hierarchical generative models, Neural Computation, 22, 12, 3127-3142, (2010) · Zbl 1207.92009
[150] van Gerven, M. A.J.; Farquhar, J.; Schaefer, R.; Vlek, R.; Geuze, J.; Nijholt, A., The brain-computer interface cycle, Journal of Neural Engineering, 6, 4, 41001, (2009)
[151] van Gerven, M. A.J.; Kok, P.; de Lange, F. P.; Heskes, T., Dynamic decoding of ongoing perception, Neuroimage, 57, 950-957, (2011)
[152] Vetter, P.; Smith, F. W.; Muckli, L., Decoding sound and imagery content in early visual cortex, Current Biology, 24, 1-7, (2014)
[153] Victor, J. D.; Purpura, K.; Katz, E.; Mao, B., Population encoding of spatial frequency, orientation, and color in macaque V1, Journal of Neurophysiology, 72, 5, 2151-2166, (1994)
[154] Vu, V.; Ravikumar, P.; Naselaris, T., Encoding and decoding V1 fMRI responses to natural images with sparse nonparametric models, Annals of Applied Statistics, 5, 2B, 1159-1182, (2011) · Zbl 1454.62413
[155] Wandell, B. A.; Winawer, J., Imaging retinotopic maps in the human brain, Vision Research, 51, 7, 718-737, (2011)
[156] Wandell, B. A.; Winawer, J.; Kay, K. N., Computational modeling of responses in human visual cortex, (Toga, A. W., Brain mapp., (2015), Academic Press), 651-659
[157] Williams, M. A.; Dang, S.; Kanwisher, N. G., Only some spatial patterns of fMRI response are Read out in task performance, Nature Neuroscience, 10, 6, 685-686, (2007)
[158] Wilson, D. A., Receptive fields in the rat piriform cortex, Chemical Senses, 26, 5, 577-584, (2001)
[159] Wu, M. M.C.-K.; David, S. V.S.; Gallant, J. L.J., Complete functional characterization of sensory neurons by system identification, Annual Review of Neuroscience, 29, 477-505, (2006)
[160] Wundt, W. (1862). Beiträge zur Theorie der Sinneswahrnehmung (Contributions on the Theory of Sensory Perception). Winter, Leipzig.
[161] Yacoub, E.; Harel, N.; Ugurbil, K., High-field fMRI unveils orientation columns in humans, Proceedings of the National Academy of Sciences, 105, 30, 10607-10612, (2008)
[162] Yamins, D. L.K.; Hong, H.; Cadieu, C. F.; Solomon, E. A.; Seibert, D.; DiCarlo, J. J., Performance-optimized hierarchical models predict neural responses in higher visual cortex, Proceedings of the National Academy of Sciences, 111, 23, 8619-8624, (2014)
[163] Yuste, R., From the neuron doctrine to neural networks, Nature Reviews Neuroscience, 16, 8, 487-497, (2015)
[164] Zipser, K.; Lamme, V. A.F.; Schiller, P. H., Contextual modulation in primary visual cortex, Journal of Neuroscience, 16, 22, 7376-7389, (1996)
[165] Zuiderbaan, W.; Harvey, B. M.; Dumoulin, S. O., Modeling center-surround configurations in population receptive fields using fMRI, Journal of Visualization, 12, 3, 1-15, (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.