×

zbMATH — the first resource for mathematics

An autocorrelation model of bat sonar. (English) Zbl 1145.92345
Summary: Their sonar system allows echolocating bats to navigate with high skill through a complex, three- dimensional environment at high speed and low light. The auditory analysis of the echoes of their ultrasonic sounds requires a detailed comparison of the emission and echoes. Here an auditory model of bat sonar is introduced and evaluated against a set of psychophysical phantom-target, echo-acoustic experiments. The model consists of a relatively detailed simulation of auditory peripheral processing in the bat, Phyllostomus discolor, followed by a functional module consisting of a strobed, normalised, autocorrelation in each frequency channel. The model output is accumulated in a sonar image buffer. The model evaluation is based on the comparison of the image-buffer contents generated in individually simulated psychophysical trials. The model provides reasonably good predictions for both temporal and spectral behavioural sonar processing in terms of sonar delay-, roughness, and phase sensitivity and in terms of sensitivity to the temporal separations in two-front targets and the classification of spectrally divergent phantom targets.

MSC:
92D50 Animal behavior
91E30 Psychophysics and psychophysiology; perception
92C05 Biophysics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anderson DJ, Rose JE, Hind JE and Brugge JF (1971). Temporal position of discharges in single auditory nerve fibers within the cycle of a sine-wave stimulus: frequency and intensity effects. J Acoust Soc Am 49(Suppl2): 1131 · doi:10.1121/1.1912474
[2] Berkowitz A and Suga N (1989). Neural mechanisms of ranging are different in two species of bats. Hear Res 41: 255–64 · doi:10.1016/0378-5955(89)90017-8
[3] Boonman A and Ostwald J (2007). A modeling approach to explain pulse design in bats. Biol Cybern 97: 159–72 · Zbl 1125.92064 · doi:10.1007/s00422-007-0164-2
[4] Brand A, Behrend O, Marquardt T, McAlpine D and Grothe B (2002). Precise inhibition is essential for microsecond interaural time difference coding. Nature 417: 543–47 · doi:10.1038/417543a
[5] Dau T, Kollmeier B and Kohlrausch A (1997). Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow-band carriers. J Acoust Soc Am 102: 2892–905 · doi:10.1121/1.420344
[6] Dear SP, Fritz J, Haresign T, Ferragamo M and Simmons JA (1993). Tonotopic and functional organization in the auditory cortex of the big brown bat, Eptesicus fuscus. J Neurophysiol 70: 1988–009
[7] Denzinger A and Schnitzler HU (1994). Echo SPL influences the ranging performance of the big brown bat, Eptesicus fuscus. J Comp Physiol A 175: 563–71 · doi:10.1007/BF00199477
[8] Denzinger A and Schnitzler HU (1998). Echo SPL, training experience and experimental procedure influence the ranging performance in the big brown bat, Eptesicus fuscus. J Comp Physiol A 183: 213–24 · doi:10.1007/s003590050249
[9] Firzlaff U and Schuller G (2003). Spectral directionality of the external ear of the lesser spear-nosed bat, Phyllostomus discolor. Hear Res 181: 27–9 · doi:10.1016/S0378-5955(03)00164-3
[10] Firzlaff U, Schörnich S, Hoffmann S, Schuller G and Wiegrebe L (2006). A neural correlate of stochastic echo imaging. J Neurosci 26: 785–91 · doi:10.1523/JNEUROSCI.3478-05.2006
[11] Firzlaff U, Schuchmann M, Grunwald JE, Schuller G and Wiegrebe L (2007). Object-oriented Echo Perception and Cortical Representation in Echolocating Bats. PLoS Biol 5: e100 · doi:10.1371/journal.pbio.0050100
[12] Ghose K and Moss CF (2006). Steering by hearing: a bat’s acoustic gaze is linked to its flight motor output by a delayed, adaptive linear law. J Neurosci 26: 1704–710 · doi:10.1523/JNEUROSCI.4315-05.2006
[13] Ghose K, Horiuchi TK, Krishnaprasad PS and Moss CF (2006). Echolocating bats use a nearly time-optimal strategy to intercept prey. PLoS Biol 4: e108 · doi:10.1371/journal.pbio.0040108
[14] Grothe B, Vater M, Casseday JH and Covey E (1992). Monaural interaction of excitation and inhibition in the medial superior olive of the mustached bat: an adaptation for biosonar. Proc Natl Acad Sci U S A 89: 5108–112 · doi:10.1073/pnas.89.11.5108
[15] Grothe B, Park TJ and Schuller G (1997). Medial superior olive in the free-tailed bat: response to pure tones and amplitude-modulated tones. J Neurophysiol 77: 1553–565
[16] Grothe B, Covey E and Casseday JH (2001). Medial superior olive of the big brown bat: neuronal responses to pure tones, amplitude modulations, and pulse trains. J Neurophysiol 86: 2219–230
[17] Grunwald JE, Schörnich S and Wiegrebe L (2004). Classification of natural textures in echolocation. Proc Natl Acad Sci USA 101: 5670–674 · doi:10.1073/pnas.0308029101
[18] Jensen ME, Moss CF and Surlykke A (2005). Echolocating bats can use acoustic landmarks for spatial orientation. J Exp Biol 208: 4399–410 · doi:10.1242/jeb.01901
[19] Matsuo I, Kunugiyama K and Yano M (2004). An echolocation model for range discrimination of multiple closely spaced objects: transformation of spectrogram into the reflected intensity distribution. J Acoust Soc Am 115: 920–28 · doi:10.1121/1.1642626
[20] Menne D, Kaipf I, Wagner I, Ostwald J and Schnitzler HU (1989). Range estimation by echolocation in the bat Eptesicus fuscus: trading of phase versus time cues. J Acoust Soc Am 85: 2642–650 · doi:10.1121/1.397758
[21] Moss C and Surlykke A (2001). Auditory scene analysis by echolocation in bats. J Acoust Soc Am 110: 2207–226 · doi:10.1121/1.1398051
[22] Moss CF, Bohn K, Gilkenson H and Surlykke A (2006). Active listening for spatial orientation in a complex auditory scene. PLoS Biol 4: e79 · doi:10.1371/journal.pbio.0040079
[23] O’Neill WE (1995). The bat auditory cortex. In: Popper, AN and Fay, RR (eds) Haering by bats, pp 416–80. Springer, New York,
[24] O’Neill WE and Suga N (1979). Target range-sensitive neurons in the auditory cortex of the mustache bat. Science 203: 69–3 · doi:10.1126/science.758681
[25] Oxenham AJ and Moore BC (1994). Modeling the additivity of nonsimultaneous masking. Hear Res 80: 105–18 · doi:10.1016/0378-5955(94)90014-0
[26] Palmer AR and Russell IJ (1986). Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells. Hear Res 24: 1–5 · doi:10.1016/0378-5955(86)90002-X
[27] Patterson RD (1994). The sound of a sinusoid: spectral models. J Acoust Soc Am 96: 1409–418 · doi:10.1121/1.410285
[28] Patterson RD, Allerhand MH and Giguere C (1995). Time-domain modeling of peripheral auditory processing: a modular architecture and a software platform. J Acoust Soc Am 98: 1890–894 · doi:10.1121/1.414456
[29] Peremans H and Hallam J (1998). The spectrogram correlation and transformation receiver, revisited. J Acoust Soc Am 104: 1101–110 · doi:10.1121/1.423326
[30] Portfors CV and Wenstrup JJ (1999). Delay-tuned neurons in the inferior colliculus of the mustached bat: implications for analyses of target distance. J Neurophysiol 82: 1326–338
[31] Portfors CV and Wenstrup JJ (2001). Topographical distribution of delay-tuned responses in the mustached bat inferior colliculus. Hear Res 151: 95–05 · doi:10.1016/S0378-5955(00)00214-8
[32] Saillant PA, Simmons JA, Dear SP and McMullen TA (1993). A computational model of echo processing and acoustic imaging in frequency-modulated echolocating bats: the spectrogram correlation and transformation receiver. J Acoust Soc Am 94: 2691–712 · doi:10.1121/1.407353
[33] Schmidt S (1988). Evidence for a spectral basis of texture perception in bat sonar. Nature 331: 617–19 · doi:10.1038/331617a0
[34] Schmidt S (1992). Perception of structured phantom targets in the echolocating bat, Megaderma lyra. J Acoust Soc Am 91: 2203–223 · doi:10.1121/1.403654
[35] Schörnich S and Wiegrebe L (2008). Phase sensitivity in bat sonar revisited. J Comp Physiol A Sens Neural Behav Physiol 194: 61–7 · doi:10.1007/s00359-007-0290-2
[36] Schuchmann M, Huebner M and Wiegrebe L (2006). The absence of spatial echo suppression in the echolocating bats Megaderma lyra and Phyllostomus discolor. J Exp Biol 209: 152–57 · doi:10.1242/jeb.01975
[37] Simmons JA (1979). Perception of echo phase information in bat sonar. Science 204: 1336–338 · doi:10.1126/science.451543
[38] Simmons JA, Ferragamo M, Moss CF, Stevenson SB and Alters RA (1990). Discrimination of jittered sonar echoes by the echolocating bat, Eptesicus fuscus: The shape of target images in echolocation. J Compar Physiol A 167: 589–16
[39] Simmons JA, Ferragamo MJ and Sanderson MI (2003). Echo delay versus spectral cues for temporal hyperacuity in the big brown bat, Eptesicus fuscus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189: 693–02 · doi:10.1007/s00359-003-0444-9
[40] Sumner CJ, Lopez-Poveda EA, O’Mard LP and Meddis R (2002). A revised model of the inner-hair cell and auditory-nerve complex. J Acoust Soc Am 111: 2178–188 · doi:10.1121/1.1453451
[41] Sumner CJ, Lopez-Poveda EA, O’Mard LP and Meddis R (2003). Adaptation in a revised inner-hair cell model. J Acoust Soc Am 113: 893–01 · doi:10.1121/1.1515777
[42] Weißenbacher P and Wiegrebe L (2003). Classification of virtual objects in the echolocating bat, Megaderma lyra. Behav Neurosci 117: 833–39 · doi:10.1037/0735-7044.117.4.833
[43] Winter IM and Palmer AR (1990). Responses of single units in the anteroventral cochlear nucleus of the guinea pig. Hear Res 44: 161–78 · doi:10.1016/0378-5955(90)90078-4
[44] Wittekindt A, Drexl M and Koessl M (2005). Cochlear sensitivity in the lesser spear-nosed bat, Phyllostomus discolor. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191: 31–6 · doi:10.1007/s00359-004-0564-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.