×

zbMATH — the first resource for mathematics

Lectures on walking technicolor, holography, and gauge/gravity dualities. (English) Zbl 1216.81159
Summary: Dynamical electroweak symmetry breaking is an appealing, strongly coupled alternative to the weakly coupled models based on an elementary scalar field developing a vacuum expectation value. In Sections 2 and 3 of this set of lectures, I summarize the arguments, based on low-energy phenomenology, supporting walking technicolor as a realistic realization of this idea. This pedagogical introduction to walking technicolor, and more generally to the physics of extensions of the standard model, makes extensive use of effective field theory arguments, symmetries, and counting rules. The strongly coupled nature of the underlying interactions, and the peculiar quasiconformal behavior of the theory, requires to use nonperturbative methods in order to address many fundamental questions within this framework. The recent development of gauge/gravity dualities provides an ideal set of such nonperturbative instruments. Sections 4 and 5 illustrate the potential of these techniques with two technical examples, one within the bottom-up phenomenological approach to holography in five dimensions, the other within a more systematic top-down construction derived from ten-dimensional type-IIB supergravity.

MSC:
81V22 Unified quantum theories
81R40 Symmetry breaking in quantum theory
81T16 Nonperturbative methods of renormalization applied to problems in quantum field theory
83E15 Kaluza-Klein and other higher-dimensional theories
81-02 Research exposition (monographs, survey articles) pertaining to quantum theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. Maldacena, “The large N limit of superconformal field theories and supergravity,” Advances in Theoretical and Mathematical Physics, vol. 2, no. 2, pp. 231-252, 1998. · Zbl 0914.53047
[2] J. Maldacena, “The large-N limit of superconformal field theories and supergravity,” International Journal of Theoretical Physics, vol. 38, no. 4, pp. 1113-1133, 1999. · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[3] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from non-critical string theory,” Physics Letters. B, vol. 428, no. 1-2, pp. 105-114, 1998. · Zbl 1355.81126 · doi:10.1016/S0370-2693(98)00377-3
[4] E. Witten, “Anti de Sitter space and holography,” Advances in Theoretical and Mathematical Physics, vol. 2, no. 2, pp. 253-291, 1998. · Zbl 0914.53048
[5] S. Weinberg, “Implications of dynamical symmetry breaking: an addendum,” Physical Review D, vol. 19, no. 4, pp. 1277-1280, 1979. · doi:10.1103/PhysRevD.19.1277
[6] L. Susskind, “Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory,” Physical Review D, vol. 20, no. 10, pp. 2619-2625, 1979. · doi:10.1103/PhysRevD.20.2619
[7] S. Weinberg, “Implications of dynamical symmetry breaking,” Physical Review D, vol. 13, no. 4, pp. 974-996, 1976. · doi:10.1103/PhysRevD.13.974
[8] B. Holdom, “Techniodor,” Physics Letters B, vol. 150, no. 4, pp. 301-305, 1985.
[9] K. Yamawaki, M. Bando, and K.-I. Matumoto, “Scale-invariant hypercolor model and a dilaton,” Physical Review Letters, vol. 56, no. 13, pp. 1335-1338, 1986. · doi:10.1103/PhysRevLett.56.1335
[10] T. Appelquist, D. Karabali, and L. C. R. Wijewardhana, “Chiral hierarchies and flavor-changing neutral currents in hypercolor,” Physical Review Letters, vol. 57, no. 8, pp. 957-960, 1986. · doi:10.1103/PhysRevLett.57.957
[11] S. Dimopoulos and L. Susskind, “Mass without scalars,” Nuclear Physics B, vol. 155, no. 1, pp. 237-252, 1979.
[12] E. Eichten and K. Lane, “Dynamical breaking of weak interaction symmetries,” Physics Letters B, vol. 90, no. 1-2, pp. 125-130, 1980.
[13] R. S. Chivukula, “Lectures on technicolor and compositeness,” http://arxiv.org/abs/hep-ph/0011264.
[14] K. Lane, “Two lectures on technicolor,” http://arxiv.org/abs/hep-ph/0202255.
[15] C. T. Hill and E. H. Simmons, “Strong dynamics and electroweak symmetry breaking,” Physics Reports, vol. 381, no. 4-6, pp. 235-402, 2003. · Zbl 01933401 · doi:10.1016/S0370-1573(03)00140-6
[16] C. T. Hill and E. H. Simmons, “Erratum: “Strong dynamics and electroweak symmetry breaking”,” Physics Reports, vol. 390, no. 6, pp. 553-554, 2004. · doi:10.1016/j.physrep.2003.10.002
[17] A. Martin, “Technicolor signals at the LHC,” http://arxiv.org/abs/0812.1841.
[18] F. Sannino, “Conformal dynamics for TeV physics and cosmology,” Acta Physica Polonica B, vol. 40, no. 12, pp. 3533-3743, 2009.
[19] S. Coleman and E. Weinberg, “Radiative corrections as the origin of spontaneous symmetry breaking,” Physical Review D, vol. 7, no. 6, pp. 1888-1910, 1973. · doi:10.1103/PhysRevD.7.1888
[20] T. Appelquist and C. Bernard, “Strongly interacting higgs bosons,” Physical Review D, vol. 22, no. 1, pp. 200-213, 1980. · doi:10.1103/PhysRevD.22.200
[21] A. C. Longhitano, “Heavy Higgs bosons in the Weinberg-Salam model,” Physical Review D, vol. 22, no. 5, pp. 1166-1175, 1980. · doi:10.1103/PhysRevD.22.1166
[22] A. C. Longhitano, “Low-energy impact of a heavy Higgs boson sector,” Nuclear Physics B, vol. 188, no. 1, pp. 118-154, 1981.
[23] T. Appelquist and G.-H. Wu, “Electroweak chiral Lagrangian and new precision measurements,” Physical Review D, vol. 48, no. 7, pp. 3235-3241, 1993. · doi:10.1103/PhysRevD.48.3235
[24] T. Appelquist and G.-H. Wu, “Electroweak chiral Lagrangian and CP-violating effects in technicolor theories,” Physical Review D, vol. 51, no. 1, pp. 240-250, 1995. · doi:10.1103/PhysRevD.51.240
[25] M. E. Peskin and T. Takeuchi, “Estimation of oblique electroweak corrections,” Physical Review D, vol. 46, no. 1, pp. 381-409, 1992. · doi:10.1103/PhysRevD.46.381
[26] R. Barbieri, A. Pomarol, R. Rattazzi, and A. Strumia, “Electroweak symmetry breaking after LEP1 and LEP2,” Nuclear Physics B, vol. 703, no. 1-2, pp. 127-146, 2004. · doi:10.1016/j.nuclphysb.2004.10.014
[27] S. L. Glashow, J. Iliopoulos, and L. Maiani, “Weak interactions with lepton-hadron symmetry,” Physical Review D, vol. 2, no. 7, pp. 1285-1292, 1970. · doi:10.1103/PhysRevD.2.1285
[28] C. D. Froggatt and H. B. Nielsen, “Hierarchy of quark masses, cabibbo angles and CP violation,” Nuclear Physics B, vol. 147, no. 3-4, pp. 277-298, 1979.
[29] T. Yanagida, in Proceedings of the Workshop on the Unified Theory and the Baryon Number in the Universe, O. Sawada and A. Sugamoto, Eds., p. 95, KEK, Tsukuba, Japan, February 1979.
[30] M. Gell-Mann, P. Ramond, and R. Slansky, in Supergravity, P. van Nieuwenhuizen and D. Z. Freedman, Eds., p. 315, North Holland, Amsterdam, The Netherlands, 1979.
[31] S. L. Glashow, “The future of elementary particle physics,” Plenum Press, vol. 59, p. 687. · Zbl 1118.85001
[32] R. N. Mohapatra and G. Senjanović, “Neutrino mass and spontaneous parity nonconservation,” Physical Review Letters, vol. 44, no. 14, pp. 912-915, 1980. · doi:10.1103/PhysRevLett.44.912
[33] B. W. Lee, C. Quigg, and H. B. Thacker, “Weak interactions at very high energies: the role of the Higgs-boson mass,” Physical Review D, vol. 16, no. 5, pp. 1519-1531, 1977. · doi:10.1103/PhysRevD.16.1519
[34] E. Farhi and L. Susskind, “Grand unified theory with heavy color,” Physical Review D, vol. 20, no. 12, pp. 3404-3411, 1979. · doi:10.1103/PhysRevD.20.3404
[35] H. Georgi, “Generalized dimensional analysis,” Physics Letters B, vol. 298, no. 1-2, pp. 187-189, 1993.
[36] M. Bando, T. Kugo, S. Uehara, K. Yamawaki, and T. Yanagida, “Is the \rho meson a dynamical gauge boson of hidden local symmetry?” Physical Review Letters, vol. 54, no. 12, pp. 1215-1218, 1985. · doi:10.1103/PhysRevLett.54.1215
[37] R. Casalbuoni, S. De Curtis, D. Dominici, and R. Gatto, “Effective weak interaction theory with a possible new vector resonance from a strong higgs sector,” Physics Letters B, vol. 155, no. 1-2, pp. 95-99, 1985.
[38] M. Bando, T. Kugo, and K. Yamawaki, “Nonlinear realization and hidden local symmetries,” Physics Reports A, vol. 164, no. 4-5, pp. 217-314, 1988. · doi:10.1016/0370-1573(88)90019-1
[39] H. Georgi, “Vector realization of chiral symmetry,” Nuclear Physics B, vol. 331, no. 2, pp. 311-330, 1990.
[40] M. Harada and K. Yamawaki, “Hidden local symmetry at loop: a new perspective of composite gauge boson and chiral phase transition,” Physics Reports, vol. 381, no. 1-3, pp. 1-233, 2003. · Zbl 01929562 · doi:10.1016/S0370-1573(03)00139-X
[41] D. T. Son and M. A. Stephanov, “QCD and dimensional deconstruction,” Physical Review D, vol. 69, no. 6, Article ID 065020, 14 pages, 2004. · doi:10.1103/PhysRevD.69.065020
[42] M. Piai, A. Pierce, and J. G. Wacker, “Composite Vector Mesons from QCD to the Little Higgs,” http://arxiv.org/abs/hep-ph/0405242.
[43] R. Casalbuoni, S. De Curtis, and D. Dominici, “Moose models with vanishing S parameter,” Physical Review D, vol. 70, no. 5, Article ID 055010, 12 pages, 2004. · doi:10.1103/PhysRevD.70.055010
[44] L. Randall and R. Sundrum, “Large mass hierarchy from a small extra dimension,” Physical Review Letters, vol. 83, no. 17, pp. 3370-3373, 1999. · Zbl 0946.81063 · doi:10.1103/PhysRevLett.83.3370
[45] D. K. Hong and H.-U. Yee, “Holographic estimate of oblique corrections for technicolor,” Physical Review D, vol. 74, no. 1, Article ID 015011, 5 pages, 2006. · doi:10.1103/PhysRevD.74.015011
[46] M. Piai, “Precision electro-weak parameters from AdS5, localized kinetic terms and anomalous dimensions,” http://arxiv.org/abs/hep-ph/0608241.
[47] M. Piai, “Walking in the third millennium,” http://arxiv.org/abs/hep-ph/0609104. · Zbl 1216.81159
[48] M. Piai, “Vector mesons from AdS/TC to the LHC,” http://arxiv.org/abs/0704.2205.
[49] K. Haba, S. Matsuzaki, and K. Yamawaki, “S parameter in the holographic walking/conformai technicolor,” Progress of Theoretical Physics, vol. 120, no. 4, pp. 691-721, 2008. · Zbl 1168.81027 · doi:10.1143/PTP.120.691
[50] M. Round, “Holographic renormalisation and the electroweak precision parameters,” http://arxiv.org/abs/1003.2933.
[51] J. Hirn and V. Sanz, “Negative S parameter from holographic technicolor,” Physical Review Letters, vol. 97, no. 12, Article ID 121803, 4 pages, 2006. · doi:10.1103/PhysRevLett.97.121803
[52] J. Hirn and V. Sanz, “The fifth dimension as an analogue computer for strong interactions at the LHC,” Journal of High Energy Physics, vol. 2007, no. 3, article 100, 2007. · doi:10.1088/1126-6708/2007/03/100
[53] C. D. Carone, J. Erlich, and J. A. Tan, “Holographic bosonic technicolor,” Physical Review D, vol. 75, no. 7, Article ID 075005, 9 pages, 2007. · doi:10.1103/PhysRevD.75.075005
[54] M. Fabbrichesi, M. Piai, and L. Vecchi, “Dynamical electroweak symmetry breaking from deformed AdS space: vector mesons and effective couplings,” Physical Review D, vol. 78, no. 4, Article ID 045009, 12 pages, 2008. · doi:10.1103/PhysRevD.78.045009
[55] J. Hirn, A. Martin, and V. Sanz, “Describing viable technicolor scenarios,” Physical Review D, vol. 78, no. 7, Article ID 075026, 12 pages, 2008. · doi:10.1103/PhysRevD.78.075026
[56] C. Núñez, I. Papadimitriou, and M. Piai, “Walking dynamics from string duals,” International Journal of Modern Physics A, vol. 25, no. 14, pp. 2837-2865, 2010. · Zbl 1193.81087 · doi:10.1142/S0217751X10049189
[57] D. Elander, C. Núñez, and M. Piai, “A light scalar from walking solutions in gauge-string duality,” Physics Letters. B, vol. 686, no. 1, pp. 64-67, 2010. · doi:10.1016/j.physletb.2010.02.023
[58] C. Núñez, M. Piai, and A. Rago, “Wilson loops in string duals of walking and flavored systems,” Physical Review D, vol. 81, no. 8, Article ID 086001, 21 pages, 2010. · doi:10.1103/PhysRevD.81.086001
[59] D. K. Hong, S. D. H. Hsu, and F. Sannino, “Composite Higgs from higher representations,” Physics Letters B, vol. 597, no. 1, pp. 89-93, 2004. · doi:10.1016/j.physletb.2004.07.007
[60] J.-P. Derendinger, “Lecture notes on globally supersymmetric theories in four and two dimensions,” in Proceedings of the 3rd Hellenic School on Elementary Particle Physics (Corfu ’89), pp. 11-234, World Scientific, Singapore, 1989.
[61] S. P. Martin, “A supersymmetry primer,” http://arxiv.org/abs/hep-ph/9709356. · Zbl 1202.81229
[62] W. D. Goldberger and M. B. Wise, “Bulk fields in the Randall-Sundrum compactification scenario,” Physical Review D, vol. 60, no. 10, Article ID 107505, 4 pages, 1999. · doi:10.1103/PhysRevD.60.107505
[63] O. DeWolfe, D. Z. Freedman, S. S. Gubser, and A. Karch, “Modeling the fifth dimension with scalars and gravity,” Physical Review D, vol. 62, no. 4, Article ID 046008, 16 pages, 2000. · doi:10.1103/PhysRevD.62.046008
[64] N. Arkani-Hamed, M. Porrati, and L. Randall, “Holography and phenomenology,” Journal of High Energy Physics, vol. 2001, no. 8, p. 32, article 17, 2001. · doi:10.1088/1126-6708/2001/08/017
[65] R. Rattazzi and A. Zaffaroni, “Comments on the holographic picture of the Randall-Sundrum model,” Journal of High Energy Physics, vol. 2001, no. 4, p. 24, article 21, 2001. · doi:10.1088/1126-6708/2001/04/021
[66] Y. Okada, M. Yamaguchi, and T. Yanagida, “Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model,” Progress of Theoretical Physics, vol. 85, no. 1, pp. 1-5, 1991. · doi:10.1143/PTP.85.1
[67] J. Ellis, G. Ridolfi, and F. Zwirner, “Radiative corrections to the masses of supersymmetric Higgs bosons,” Physics Letters B, vol. 257, no. 1-2, pp. 83-91, 1991.
[68] H. E. Haber and R. Hempfling, “Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than mZ?” Physical Review Letters, vol. 66, no. 14, pp. 1815-1818, 1991. · doi:10.1103/PhysRevLett.66.1815
[69] R. Barbieri, M. Frigeni, and F. Caravaglios, “The supersymmetric Higgs for heavy superpartners,” Physics Letters B, vol. 258, no. 1-2, pp. 167-170, 1991.
[70] D. B. Kaplan and H. Georgi, “SU(2) \times U(1) breaking by vacuum misalignment,” Physics Letters B, vol. 136, no. 3, pp. 183-186, 1984.
[71] D. B. Kaplan, H. Georgi, and S. Dimopoulos, “Composite Higgs scalars,” Physics Letters B, vol. 136, no. 3, pp. 187-190, 1984.
[72] H. Georgi, D. B. Kaplan, and P. Galison, “Calculation of the composite Higgs mass,” Physics Letters B, vol. 143, no. 1-3, pp. 152-154, 1984.
[73] H. Georgi and D. B. Kaplan, “Composite Higgs and custodial SU(2),” Physics Letters B, vol. 145, no. 3-4, pp. 216-220, 1984.
[74] M. J. Dugan, H. Georgi, and D. B. Kaplan, “Anatomy of a composite Higgs model,” Nuclear Physics B, vol. 254, pp. 299-326, 1985.
[75] R. Contino, Y. Nomura, and A. Pomarol, “Higgs as a holographic pseudo-Goldstone boson,” Nuclear Physics B, vol. 671, pp. 148-174, 2003. · Zbl 1058.81583 · doi:10.1016/j.nuclphysb.2003.08.027
[76] K. Agashe, R. Contino, and A. Pomarol, “The minimal composite Higgs model,” Nuclear Physics B, vol. 719, no. 1-2, pp. 165-187, 2005. · Zbl 05143162 · doi:10.1016/j.nuclphysb.2005.04.035
[77] D. D. Dietrich, F. Sannino, and K. Tuominen, “Light composite Higgs boson from higher representations versus electroweak precision measurements: predictions for CERN LHC,” Physical Review D, vol. 72, no. 5, Article ID 055001, pp. 1-21, 2005. · doi:10.1103/PhysRevD.72.055001
[78] N. Arkani-Hamed, A. G. Cohen, and H. Georgi, “Electroweak symmetry breaking from dimensional deconstruction,” Physics Letters B, vol. 513, no. 1-2, pp. 232-240, 2001. · Zbl 0969.81657 · doi:10.1016/S0370-2693(01)00741-9
[79] N. Arkani-Hamed, A. G. Cohen, E. Katz, A. E. Nelson, T. Gregoire, and J. G. Wacker, “The minimal moose for a little Higgs,” Journal of High Energy Physics, vol. 2002, no. 8, article 21, 2002. · Zbl 1226.81298 · doi:10.1088/1126-6708/2002/08/021
[80] N. Arkani-Hamed, A. G. Cohen, E. Katz, and A. E. Nelson, “The littlest Higgs,” Journal of High Energy Physics, vol. 2002, no. 7, article 34, 2002. · Zbl 1226.81298 · doi:10.1088/1126-6708/2002/07/034
[81] L. W. Skiba and D. Tucker-Smith, “Little Higgses from an antisymmetric condensate,” Physical Review D, vol. 66, no. 7, Article ID 072001, 8 pages, 2002. · doi:10.1103/PhysRevD.66.072001
[82] M. Perelstein, “Little Higgs models and their phenomenology,” Progress in Particle and Nuclear Physics, vol. 58, no. 1, pp. 247-291, 2007. · doi:10.1016/j.ppnp.2006.04.001
[83] T. Banks and A. Zaks, “On the phase structure of vector-like gauge theories with massless fermions,” Nuclear Physics B, vol. 196, no. 2, pp. 189-204, 1982.
[84] V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, “Exact Gell-Mann-Low function of supersymmetric Yang-Mills theories from instanton calculus,” Nuclear Physics B, vol. 229, no. 2, pp. 381-393, 1983.
[85] M. A. Shifman and A. I. Vainshtein, “Solution of the anomaly puzzle in SUSY gauge theories and the Wilson operator expansion,” Nuclear Physics B, vol. 277, pp. 456-486, 1986.
[86] Soviet Physics JETP, vol. 64, p. 4287, 1986 ZETFA,91,723-744.1986.
[87] N. Seiberg, “Exact results on the space of vacua of four-dimensional SUSY gauge theories,” Physical Review D, vol. 49, no. 12, pp. 6857-6863, 1994. · doi:10.1103/PhysRevD.49.6857
[88] N. Seiberg, “Electric-magnetic duality in supersymmetric non-abelian gauge theories,” Nuclear Physics B, vol. 435, no. 1-2, pp. 129-146, 1995. · Zbl 1020.81912 · doi:10.1016/0550-3213(94)00023-8
[89] K. Intriligator and N. Seiberg, “Lectures on supersymmetric gauge theories and electric-magnetic duality,” Nuclear Physics B, vol. 45, no. 2-3, pp. 1-28, 1996. · Zbl 0991.81588 · doi:10.1016/0920-5632(95)00626-5
[90] J. Gasser and H. Leutwyler, “Chiral perturbation theory to one loop,” Annals of Physics, vol. 158, no. 1, pp. 142-210, 1984.
[91] C. Amsler, M. Doser, M. Antonelli, et al., “Review of Particle Physics,” Physics Letters B, vol. 667, no. 1-5, pp. 1-6, 2008. · doi:10.1016/j.physletb.2008.07.018
[92] The LEP Collaborations: ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL Collaboration, and The LEP Electroweak Working Group, “A combination of preliminary electroweak measurements and constraints on the standard model,” http://arxiv.org/abs/hepex/0511027.
[93] J. D. Wells, “Lectures on Higgs boson physics in the standard model and beyond,” http://arxiv.org/abs/0909.4541.
[94] T. Appelquist and F. Sannino, “Physical spectrum of conformal SU(N) gauge theories,” Physical Review D, vol. 59, no. 6, Article ID 067702, 4 pages, 1999. · doi:10.1103/PhysRevD.59.067702
[95] Y. Grossman and M. Neubert, “Neutrino masses and mixings in non-factorizable geometry,” Physics Letters B, vol. 474, no. 3-4, pp. 361-371, 2000. · Zbl 1049.81671 · doi:10.1016/S0370-2693(00)00054-X
[96] T. Gherghetta and A. Pomarol, “Bulk fields and supersymmetry in a slice of AdS,” Nuclear Physics B, vol. 586, no. 1-2, pp. 141-162, 2000. · Zbl 1009.83050 · doi:10.1016/S0550-3213(00)00392-8
[97] S. J. Huber and Q. Shafi, “Fermion masses, mixings and proton decay in a Randall-Sundrum model,” Physics Letters B, vol. 498, no. 3-4, pp. 256-262, 2001. · Zbl 01561503 · doi:10.1016/S0370-2693(00)01399-X
[98] G. Burdman, “Constraints on the bulk standard model in the Randall-Sundrum scenario,” Physical Review D, vol. 66, no. 7, Article ID 076003, 9 pages, 2002. · doi:10.1103/PhysRevD.66.076003
[99] K. Agashe, G. Perez, and A. Soni, “Flavor structure of warped extra dimension models,” Physical Review D, vol. 71, no. 1, Article ID 016002, 26 pages, 2005. · doi:10.1103/PhysRevD.71.016002
[100] K. Agashe, R. Contino, L. Da Rold, and A. Pomarol, “A custodial symmetry for Zbb,” Physics Letters B, vol. 641, no. 1, pp. 62-66, 2006. · doi:10.1016/j.physletb.2006.08.005
[101] G. Cacciapaglia, C. Csáki, J. Galloway, G. Marandella, J. Terning, and A. Weiler, “A GIM mechanism from extra dimensions,” Journal of High Energy Physics, vol. 2008, no. 4, article 6, 2008. · doi:10.1088/1126-6708/2008/04/006
[102] T. Appelquist and R. Shrock, “Neutrino masses in theories with dynamical electroweak symmetry breaking,” Physics Letters B, vol. 548, no. 3-4, pp. 204-214, 2002. · Zbl 01828070 · doi:10.1016/S0370-2693(02)02854-X
[103] T. Appelquist and R. Shrock, “Dynamical symmetry breaking of extended gauge symmetries,” Physical Review Letters, vol. 90, no. 20, Article ID 201801, 4 pages, 2003. · doi:10.1103/PhysRevLett.90.201801
[104] T. Appelquist, M. Piai, and R. Shrock, “Fermion masses and mixing in extended technicolor models,” Physical Review D, vol. 69, no. 1, Article ID 015002, 33 pages, 2004. · doi:10.1103/PhysRevD.69.015002
[105] T. Appelquist, M. Piai, and R. Shrock, “Lepton dipole moments in extended technicolor models,” Physics Letters B, vol. 593, no. 1-4, pp. 175-180, 2004. · doi:10.1016/j.physletb.2004.04.062
[106] T. Appelquist, M. Piai, and R. Shrock, “Quark dipole operators in extended technicolor models,” Physics Letters B, vol. 595, no. 1-4, pp. 442-452, 2004. · doi:10.1016/j.physletb.2004.06.066
[107] T. Appelquist, N. Christensen, M. Piai, and R. Shrock, “Flavor-changing processes in extended technicolor,” Physical Review D, vol. 70, no. 9, Article ID 093010, 15 pages, 2004. · doi:10.1103/PhysRevD.70.093010
[108] A. Birkedal, K. Matchev, and M. Perelstein, “Collider phenomenology of the higgsless models,” Physical Review Letters, vol. 94, no. 19, Article ID 191803, 4 pages, 2005. · doi:10.1103/PhysRevLett.94.191803
[109] M. Papucci, “NDA and perturbativity in Higgsless models,” http://arxiv.org/abs/hep-ph/0408058.
[110] M. Fabbrichesi and L. Vecchi, “Possible experimental signatures at the LHC of strongly interacting electro-weak symmetry breaking,” Physical Review D, vol. 76, no. 5, Article ID 056002, 11 pages, 2007. · doi:10.1103/PhysRevD.76.056002
[111] T. Appelquist and L. C. R. Wijewardhana, “Chiral hierarchies from slowly running couplings in technicolor theories,” Physical Review D, vol. 36, no. 2, pp. 568-580, 1987. · doi:10.1103/PhysRevD.36.568
[112] M. E. Peskin, “The alignment of the vacuum in theories of technicolor,” Nuclear Physics B, vol. 175, no. 2, pp. 197-233, 1980. · doi:10.1016/0550-3213(80)90051-6
[113] W. A. Bardeen, C. N. Leung, and S. T. Love, “Dilaton and chiral-symmetry breaking,” Physical Review Letters, vol. 56, no. 12, pp. 1230-1233, 1986. · doi:10.1103/PhysRevLett.56.1230
[114] M. Bando, K.-i. Matumoto, and K. Yamawaki, “Technidilaton,” Physics Letters B, vol. 178, no. 2-3, pp. 308-312, 1986.
[115] K. Yamawaki, M. Bando, and K.-I. Matumoto, “Scale-invariant hypercolor model and a dilaton,” Physical Review Letters, vol. 56, no. 13, pp. 1335-1338, 1986. · doi:10.1103/PhysRevLett.56.1335
[116] B. Holdom and J. Terning, “A light dilation in gauge theories?” Physics Letters B, vol. 187, no. 3-4, pp. 357-361, 1987.
[117] B. Holdom and J. Terning, “No light dilaton in gauge theories,” Physics Letters B, vol. 200, no. 3, pp. 338-342, 1988.
[118] W. D. Goldberger, B. Grinstein, and W. Skiba, “Distinguishing the higgs Boson from the dilaton at the large Hadron collider,” Physical Review Letters, vol. 100, no. 11, Article ID 111802, 4 pages, 2008. · doi:10.1103/PhysRevLett.100.111802
[119] L. Vecchi, “Phenomenology of a light scalar: the dilaton,” http://arxiv.org/abs/1002.1721.
[120] K. Haba, S. Matsuzaki, and K. Yamawaki, “Holographic techni-dilaton, or conformal Higgs,” http://arxiv.org/abs/1003.2841. · Zbl 1168.81027
[121] W. D Goldberger and M. B. Wise, “Phenomenology of a stabilized modulus,” Physics Letters B, vol. 475, no. 3-4, pp. 275-279, 2000. · doi:10.1016/S0370-2693(00)00099-X
[122] C. Csâki, M. L. Graesser, and G. D. Kribs, “Radion dynamics and electroweak physics,” Physical Review D, vol. 63, no. 6, Article ID 065002, 23 pages, 2001. · doi:10.1103/PhysRevD.63.065002
[123] S. Catterall and F. Sannino, “Minimal walking on the lattice,” Physical Review D, vol. 76, no. 3, Article ID 034504, 8 pages, 2007. · doi:10.1103/PhysRevD.76.034504
[124] T. Appelquist, G. T. Fleming, and E. T. Neil, “Lattice study of the conformal window in QCD-like theories,” Physical Review Letters, vol. 100, no. 17, Article ID 171607, 4 pages, 2008. · doi:10.1103/PhysRevLett.100.171607
[125] T. Appelquist, G. T. Fleming, and E. T. Neil, “Erratum: “Lattice study of the conformal window in QCD-like theories”,” Physical Review Letters, vol. 102, no. 14, Article ID 149902, 1 pages, 2009. · doi:10.1103/PhysRevLett.102.149902
[126] Y. Shamir, B. Svetitsky, and T. DeGrand, “Zero of the discrete beta function in SU(3) lattice gauge theory with color sextet fermions,” Physical Review D, vol. 78, no. 3, Article ID 031502, 5 pages, (2008. · doi:10.1103/PhysRevD.78.031502
[127] A. Deuzeman, M. P. Lombardo, and E. Pallante, “The physics of eight flavours,” Physics Letters B, vol. 670, no. 1, pp. 41-48, 2008. · doi:10.1016/j.physletb.2008.10.039
[128] L. Del Debbio, A. Patella, and C. Pica, “Higher representations on the lattice: numerical simulations, SU(2) with adjoint fermions,” Physical Review DN, vol. 81, no. 9, Article ID 094503, 16 pages, 2010. · doi:10.1103/PhysRevD.81.094503
[129] S. Catterall, J. Giedt, F. Sannino, and J. Schneible, “Phase diagram of SU(2) with 2 flavors of dynamical adjoint quarks,” Journal of High Energy Physics, vol. 2008, no. 11, article 9, 2008. · doi:10.1088/1126-6708/2008/11/009
[130] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, and C. Schroeder, “Probing technicolor theories with staggered fermions,” http://arxiv.org/abs/0809.4890.
[131] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, and C. Schroeder, “Nearly conformal electroweak sector with chiral fermions,” http://arxiv.org/abs/0809.4888.
[132] X.-Y. Jin and R. D. Mawhinney, “Lattice QCD with eight degenerate quark flavors,” http://arxiv.org/abs/0812.0413.
[133] A. J. Hietanen, J. Rantaharju, K. Rummukainen, and K. Tuominen, “Spectrum of SU(2) lattice gauge theory with two adjoint Dirac flavours,” Journal of High Energy Physics, vol. 2009, no. 5, article 25, 2009. · doi:10.1088/1126-6708/2009/05/025
[134] T. DeGrand, Y. Shamir, and B. Svetitsky, “Phase structure of SU(3) gauge theory with two flavors of symmetric-representation fermions,” Physical Review D, vol. 79, no. 3, Article ID 034501, 11 pages, 2009. · doi:10.1103/PhysRevD.79.034501
[135] T. Appelquist, G. T. Fleming, and E. T. Neil, “Lattice study of conformal behavior in SU(3) Yang-Mills theories,” Physical Review D, vol. 79, no. 7, Article ID 076010, 16 pages, 2009. · doi:10.1103/PhysRevD.79.076010
[136] A. J. Hietanen, K. Rummukainen, and K. Tuominen, “Evolution of the coupling constant in SU(2) lattice gauge theory with two adjoint fermions,” Physical Review D, vol. 80, no. 9, Article ID 094504, 7 pages, 2009. · doi:10.1103/PhysRevD.80.094504
[137] A. Deuzeman, M. P. Lombardo, and E. Pallante, “Evidence for a conformal phase in SU(N) gauge theories,” http://arxiv.org/abs/0904.4662.
[138] Z. Fodor, K. Holland, J. Kuti, D. Nógrádi, and C. Schroeder, “Topology and higher dimensional representations,” Journal of High Energy Physics, vol. 2009, no. 8, article 84, 2009. · doi:10.1088/1126-6708/2009/08/084
[139] T. Degrand and A. Hasenfratz, “Remarks on lattice gauge theories with infrared-attractive fixed points,” Physical Review D, vol. 80, no. 3, Article ID 034506, 5 pages, 2009. · doi:10.1103/PhysRevD.80.034506
[140] T. DeGrand, “Volume scaling of Dirac eigenvalues in SU(3) lattice gauge theory with color sextet fermions,” http://arxiv.org/abs/0906.4543.
[141] A. Hasenfratz, “Investigating the critical properties of beyond-QCD theories using Monte Carlo renormalization group matching,” Physical Review D, vol. 80, no. 3, Article ID 034505, 14 pages, 2009. · doi:10.1103/PhysRevD.80.034505
[142] L. Del Debbio, B. Lucini, A. Patella, C. Pica, and A. Rago, “Conformal vs confining scenario in SU(2) with adjoint fermions,” Physical Review D, vol. 80, no. 3, Article ID 034505, 14 pages, 2009. · doi:10.1103/PhysRevD.80.034505
[143] Z. Fodor, K. Holland, J. Kuti, D. Nógrádi, and C. Schroeder, “Nearly conformal gauge theories in finite volume,” Physics Letters B, vol. 681, no. 4, pp. 353-361, 2009. · doi:10.1016/j.physletb.2009.10.040
[144] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, and C. Schroeder, “Chiral properties of SU(3) sextet fermions,” Journal of High Energy Physics, vol. 2009, no. 11, article 103, 2009. · doi:10.1088/1126-6708/2009/11/103
[145] T. Appelquist, A. Avakian, R. Babich, et al., “Toward TeV conformality,” Physical Review Letters, vol. 104, no. 7, Article ID 071601, 4 pages, 2010. · doi:10.1103/PhysRevLett.104.071601
[146] T. Degrand, “Finite-size scaling tests for SU(3) lattice gauge theory with color sextet fermions,” Physical Review D, vol. 80, no. 11, Article ID 114507, 12 pages, 2009. · doi:10.1103/PhysRevD.80.114507
[147] E. Bilgici, A. Flachi, and E. Itou, “Search for the IR fixed point in the twisted Polyakov loop scheme,” http://arxiv.org/abs/0910.4196.
[148] S. Catterall, J. Giedt, F. Sannino, and J. Schneible, “Probes of nearly conformal behavior in lattice simulations of minimal walking technicolor,” http://arxiv.org/abs/0910.4387.
[149] F. Bursa, L. Del Debbio, L. Keegan, C. Pica, and T. Pickup, “Mass anomalous dimension in SU(2) with two adjoint fermions,” Physical Review D, vol. 81, no. 1, Article ID 014505, 13 pages, 2010. · doi:10.1103/PhysRevD.81.014505
[150] B. Lucini, “Strongly interacting dynamics beyond the standard model on a spacetime lattice,” http://arxiv.org/abs/0911.0020. · Zbl 1202.81228
[151] J. B. Kogut and D. K. Sinclair, “Thermodynamics of lattice QCD with 2 flavours of colour-sextet quarks: a model of walking/conformal technicolor,” http://arxiv.org/abs/1002.2988.
[152] J. Erlich, E. Katz, D. T. Son, and M. A. Stephanov, “QCD and a holographic model of hadrons,” Physical Review Letters, vol. 95, no. 26, Article ID 261602, 4 pages, 2005. · doi:10.1103/PhysRevLett.95.261602
[153] L. Da Rold and A. Pomarol, “Chiral symmetry breaking from five dimensional spaces,” Nuclear Physics B, vol. 164, pp. 277-279, 2007. · Zbl 1128.81310 · doi:10.1016/j.nuclphysbps.2006.11.072
[154] K. Skenderis, “Lecture notes on holographic renormalization,” Classical and Quantum Gravity, vol. 19, no. 22, pp. 5849-5876, 2002. · Zbl 1044.83009 · doi:10.1088/0264-9381/19/22/306
[155] J. Papadimitriou, M. Shearer, and R. Tilly, “Some properties of cells cultured from early lactation human milk,” Journal of the National Cancer Institute, vol. 58, no. 6, pp. 1563-1571, 1977.
[156] M. Piai and M. Round, “Mass-degenerate Heavy Vector Mesons at Hadron Colliders,” http://arxiv.org/abs/0904.1524.
[157] C. Csáki, C. Grojean, L. Pilo, and J. Terning, “Towards a realistic model of Higgsless electroweak symmetry breaking,” Physical Review Letters, vol. 92, no. 10, Article ID 101802, 4 pages, 2004. · doi:10.1103/PhysRevLett.92.101802
[158] Y. Nomura, “Higgsless theory of electroweak symmetry breaking from warped space,” Journal of High Energy Physics, vol. 7, no. 11, pp. 1131-1147, 2003.
[159] A. Karch, E. Katz, D. T. Son, and M. A. Stephanov, “Linear confinement and AdS/QCD,” Physical Review D, vol. 74, no. 1, Article ID 015005, 2006. · doi:10.1103/PhysRevD.74.015005
[160] J. Maldacena and C. Nuñez, “Towards the large N limit of pure N=1 super Yang-Mills theory,” Physical Review Letters, vol. 86, no. 4, pp. 588-591, 2001. · doi:10.1103/PhysRevLett.86.588
[161] I. R. Klebanov and M. J. Strassler, “Supergravity and a confining gauge theory: duality cascades and \chi SB-resolution of naked singularities,” Journal of High Energy Physics, vol. 4, no. 8, pp. 21-35, 2000. · Zbl 0986.83041 · doi:10.1088/1126-6708/2000/08/052
[162] E. Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories,” Advances in Theoretical and Mathematical Physics, vol. 2, no. 3, pp. 505-532, 1998. · Zbl 1057.81550
[163] T. Sakai and S. Sugimoto, “Low energy hadron physics in holographic QCD,” Progress of Theoretical Physics, vol. 113, no. 4, pp. 843-882, 2005. · Zbl 1076.81623 · doi:10.1143/PTP.113.843 · ptp.ipap.jp
[164] O. Aharony, J. Sonnenschein, and S. Yankielowicz, “A holographic model of deconfinement and chiral symmetry restoration,” Annals of Physics, vol. 322, no. 6, pp. 1420-1443, 2007. · Zbl 1118.81074 · doi:10.1016/j.aop.2006.11.002
[165] J. Polchinski and M. J. Strassler, “The string dual of a confining four-dimensional gauge theory,” http://arxiv.org/abs/hep-th/0003136.
[166] K. Pilch and N. P. Warner, “N=1 supersymmetric renormalization group flows from IIB supergravity,” http://arxiv.org/abs/hep-th/0006066. · Zbl 1063.81626
[167] D. Z. Freedman, S. S. Gubser, K. Pilch, and N. P. Warner, “Renormalization group flows from holography; supersymmetry and a c-theorem,” Advances in Theoretical and Mathematical Physics, vol. 3, no. 2, pp. 363-417, 1999. · Zbl 0976.83067
[168] M. J. Strassler, “The Duality Cascade,” http://arxiv.org/abs/hep-th/0505153. · Zbl 1084.81064
[169] O. Mintakevich and J. Sonnenschein, “Holographic technicolor models and their S-parameter,” Journal of High Energy Physics, vol. 2009, no. 7, article 32, 2009. · doi:10.1088/1126-6708/2009/07/032
[170] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, “Large N field theories, string theory and gravity,” Physics Reports, vol. 323, no. 3-4, pp. 183-386, 2000. · Zbl 1368.81009 · doi:10.1016/S0370-1573(99)00083-6
[171] M. Bertolini, “Four lectures on the gauge/gravity correspondence,” International Journal of Modern Physics A, vol. 18, no. 31, pp. 5647-5711, 2003. · Zbl 1080.81595 · doi:10.1142/S0217751X03016811
[172] C. Hoyos, C. Núñez, and I. Papadimitriou, “Remarks on the string dual to N=1 supersymmetric QCD,” Physical Review D, vol. 78, no. 8, Article ID 086005, 32 pages, 2008. · doi:10.1103/PhysRevD.78.086005
[173] R. Casero, C. Núñez, and A. Paredes, “Towards the string dual of N=1 supersymmetric QCD-like theories,” Physical Review D, vol. 73, no. 8, Article ID 086005, pp. 1-35, 2006. · doi:10.1103/PhysRevD.73.086005
[174] R. Casero, C. Núñez, and A. Paredes, “Elaborations on the string dual to N=1 SQCD,” Physical Review D, vol. 77, no. 4, Article ID 046003, 23 pages, 2008. · doi:10.1103/PhysRevD.77.046003
[175] N. Itzhaki, J. M. Maldacena, J. Sonnenschein, and S. Yankielowicz, “Supergravity and the large N limit of theories with sixteen supercharges,” Physical Review D, vol. 58, no. 4, Article ID 046004, 11 pages, 1998. · doi:10.1103/PhysRevD.58.046004
[176] R. Apreda, F. Bigazzi, A. L. Cotrone, M. Petrini, and A. Zaffaroni, “Some comments on N=1 gauge theories from wrapped branes,” Physics Letters B, vol. 536, no. 1-2, pp. 161-168, 2002. · Zbl 0995.81106 · doi:10.1016/S0370-2693(02)01802-6
[177] P. Di Vecchia, A. Lerda, and P. Merlatti, “N=1 and N=2 super-Yang-Mills theories from wrapped branes,” Nuclear Physics B, vol. 646, no. 1-2, pp. 43-68, 2002. · Zbl 0999.81074 · doi:10.1016/S0550-3213(02)00906-9
[178] M. Bertolini and P. Merlatti, “A note on the dual of N=1 super-Yang-Mills theory,” Physics Letters B, vol. 556, no. 1-2, pp. 80-86, 2003. · Zbl 1010.81055 · doi:10.1016/S0370-2693(03)00100-X
[179] C. Núñez, A. Paredes, and A. V. Ramallo, “Flavoring the gravity dual of N=1 Yang-Mills with probes,” Journal of High Energy Physics, vol. 2003, no. 12, article 24, 2003. · doi:10.1088/1126-6708/2003/12/024
[180] R. P. Andrews and N. Dorey, “Deconstruction of the Maldacena-Núñez compactification,” Nuclear Physics B, vol. 751, no. 1-2, pp. 304-341, 2006. · Zbl 1192.81315 · doi:10.1016/j.nuclphysb.2006.06.013
[181] G. Papadopoulos and A. A. Tseytlin, “Complex geometry of conifolds and a 5-brane wrapped on a 2-sphere,” Classical and Quantum Gravity, vol. 18, no. 7, pp. 1333-1353, 2001. · Zbl 0984.83045 · doi:10.1088/0264-9381/18/7/315
[182] I. R. Klebanov and E. Witten, “Superconformal field theory on threebranes at a Calabi-Yau singularity,” Nuclear Physics B, vol. 536, no. 1-2, pp. 199-218, 1998. · Zbl 0948.81619 · doi:10.1016/S0550-3213(98)00654-3
[183] I. R. Klebanov and A. A. Tseytlin, “Gravity duals of supersymmetric SU(N)\times SU(N+M) gauge theories,” Nuclear Physics B, vol. 578, no. 1-2, pp. 123-138, 2000. · Zbl 0976.81109 · doi:10.1016/S0550-3213(00)00206-6
[184] M. Berg, M. Haack, and W. Mück, “Bulk dynamics in confining gauge theories,” Nuclear Physics B, vol. 736, no. 1-2, pp. 82-132, 2006. · Zbl 1109.81352 · doi:10.1016/j.nuclphysb.2005.11.029
[185] M. Berg, M. Haack, and W. Mück, “Glueballs vs. gluinoballs: fluctuation spectra in non-AdS/non-CFT,” Nuclear Physics B, vol. 789, no. 1-2, pp. 1-44, 2008. · Zbl 1151.81387 · doi:10.1016/j.nuclphysb.2007.07.012
[186] F. Bigazzi, A. L. Cotrone, M. Petrini, and A. Zaffaroni, “Supergravity duals of supersymmetric four dimensional gauge theories,” http://arxiv.org/abs/hep-th/0303191. · Zbl 0995.81106
[187] A. Butti, M. Graña, R. Minasian, M. Petrini, and A. Zaffaroni, “The baryonic branch of Klebanov-Strassler solution: a supersymmetric family of SU(3) structure backgrounds,” Journal of High Energy Physics, vol. 2005, no. 3, article 69, 2005. · doi:10.1088/1126-6708/2005/03/069
[188] I. R. Klebanov and E. Witten, “AdS/CFT correspondence and symmetry breaking,” Nuclear Physics B, vol. 556, no. 1-2, pp. 89-114, 1999. · Zbl 0958.81134 · doi:10.1016/S0550-3213(99)00387-9
[189] J. Maldacena and D. Martelli, “The unwarped, resolved, deformed conifold: fivebranes and the baryonic branch of the Klebanov-Strassler theory,” http://arxiv.org/abs/0906.0591. · Zbl 1269.81142
[190] D. Elander, “Glueball spectra of SQCD-like theories,” http://arxiv.org/abs/0912.1600. · Zbl 1271.81173
[191] K. G. Wilson, “Confinement of quarks,” Physical Review D, vol. 10, no. 8, pp. 2445-2459, 1974. · doi:10.1103/PhysRevD.10.2445
[192] J. Maldacena, “Wilson loops in large N field theories,” Physical Review Letters, vol. 80, no. 22, pp. 4859-4862, 1998. · Zbl 0947.81128 · doi:10.1103/PhysRevLett.80.4859
[193] S.-J. Rey and J.-T. Yee, “Macroscopic strings as heavy quarks: large-N gauge theory and anti-de Sitter supergravity,” The European Physical Journal C, vol. 22, no. 2, pp. 379-394, 2001. · Zbl 1072.81555 · doi:10.1007/s100520100799
[194] S.-J. Rey, S. Theisen, and J.-T. Yee, “Wilson-Polyakov loop at finite temperature in large-N gauge theory and anti-de Sitter supergravity,” Nuclear Physics B, vol. 527, no. 1-2, pp. 171-186, 1998. · Zbl 0956.83059 · doi:10.1016/S0550-3213(98)00471-4
[195] A. Brandhuber, N. Itzhaki, J. Sonnenschein, and S. Yankielowicz, “More on probing branes with branes,” Physics Letters B, vol. 423, no. 3-4, pp. 238-246, 1998. · doi:10.1016/S0370-2693(98)00158-0
[196] A. Brandhuber, N. Itzhaki, J. Sonnenschein, and S. Yankielowicz, “Wilson loops, confinement, and phase transitions in large N gauge theories from supergravity,” Journal of High Energy Physics, vol. 1998, no. 6, article 1, 1998. · Zbl 0958.81172 · doi:10.1088/1126-6708/1998/06/001
[197] D. J. Gross and H. Ooguri, “Aspects of large N gauge theory dynamics as seen by string theory,” Physical Review D, vol. 58, no. 10, Article ID 106002, 12 pages, 1998. · doi:10.1103/PhysRevD.58.106002
[198] D. E. Berenstein, R. Corrado, W. Fischler, and J. M. Maldacena, “Operator product expansion for Wilson loops and surfaces in the large N limit,” Physical Review D, vol. 59, no. 10, Article ID 105023, 10 pages, 1999. · doi:10.1103/PhysRevD.59.105023
[199] N. Drukker, D. J. Gross, and H. Ooguri, “Wilson loops and minimal surfaces,” Physical Review D, vol. 60, no. 12, Article ID 125006, 20 pages, 1999. · doi:10.1103/PhysRevD.60.125006
[200] H. Liu, K. Rajagopal, and U. A. Wiedemann, “Calculating the Jet Quenching Parameter,” Physics Review Letters, vol. 97, no. 18, Article ID 182301, 4 pages, 2006. · doi:10.1103/PhysRevLett.97.182301
[201] L. F. Alday and J. Maldacena, “Gluon scattering amplitudes at strong coupling,” Journal of High Energy Physics, vol. 2007, no. 6, article 64, 2007. · Zbl 1245.81256 · doi:10.1088/1126-6708/2007/06/064
[202] O. Lunin, “On gravitational description of Wilson lines,” Journal of High Energy Physics, vol. 2006, no. 6, article 26, 2006. · doi:10.1088/1126-6708/2006/06/026
[203] J. Gomis and F. Passerini, “Holographic Wilson loops,” Journal of High Energy Physics, vol. 2006, no. 8, article 74, 2006. · doi:10.1088/1126-6708/2006/08/074
[204] S. Yamaguchi, “Wilson loops of anti-symmetric representation and D5-branes,” Journal of High Energy Physics, vol. 2006, no. 5, article 37, 2006. · doi:10.1088/1126-6708/2006/05/037
[205] N. Drukker and B. Fiol, “All-genus calculation of Wilson loops using D-branes,” Journal of High Energy Physics, vol. 2005, no. 2, pp. 199-224, 2005. · doi:10.1088/1126-6708/2005/02/010
[206] J. Sonnenschein, “What does the string/gauge correspondence teach us about Wilson loops?” http://arxiv.org/abs/hep-th/0003032. · Zbl 1021.81048
[207] Y. Kinar, E. Schreiber, and J. Sonnenschein, “QQ\? potential from strings in curved space-time-classical results,” Nuclear Physics B, vol. 566, no. 1-2, pp. 103-125, 2000. · Zbl 1028.81516 · doi:10.1016/S0550-3213(99)00652-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.